• Title/Summary/Keyword: High Temperature Structure

Search Result 3,112, Processing Time 0.033 seconds

A Study on Injection Characteristic using Active Temperature Control of Injection mold (사출 금형의 능동형 온도제어에 따른 사출특성에 관한 연구)

  • Cho, C.Y.;Sin, H.G.;Hong, N.P.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.302-305
    • /
    • 2007
  • In recent years, many researches on new storage media with high capacity and information are developing. For manufacture of optical storage with high capacity, the injection molding process is generally used. In order to increase the filling ratio of the injection molding structure, the injection molding process required for high injection pressure, packing pressure and temperature control of the mold. However, conventional injection molding process is difficult to increase the filling ratio using injection master with the range of several nanometers and high aspect ratio. In order to improve and increase filling ratio of nano-structure with high aspect ratio, the active temperature control of injection mold was used. Experimental conditions were used injection pressure, time and temperature. Consequently, by using the peltier device into injection mold, we carried out the efficient and active temperature control of mold at low cost.

  • PDF

In Situ Observation of Domain Structure of $NaNbO_3$ Using Polarizing Microscope (편광 현미경을 이용한 Sodium Niobate 단결정의 분역 구조 관찰)

  • 정선태
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1235-1239
    • /
    • 1997
  • Sodium niobate single crystals were grown by high temperature solution growth with Na2O/B2O3 flux. The phase transitions and domain structures of sodium niobate were observed using transmission polarizing microscope from room temperature to $650^{\circ}C$. There was imperfect extinction region within as-grown crystals and this area could be removed by heat treatment. The area existed within crystal till 3$65^{\circ}C$, in which temperature the space group of sodium niobate is changed from Pbma to Pmnm. The phase transition from Pbma to Pmnm happened abruptly with changing domain structure. At 48$0^{\circ}C$, 52$0^{\circ}C$ and 572$^{\circ}C$, the colors and walls of domains were changed. All domains disappeared and the space group of sodium niobate was changed from P4/mbm to Pm3m at 64$0^{\circ}C$. When sodium niobate changed from high temperature phase to low temperature phase, the memory effect of domain structure was not observed.

  • PDF

Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion (고온공기를 이용한 제트확산화염의 연소특성에 관한 실험)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.

Evaluation of Mechanical Characteristic of Plate-Type Polymer in Thermal-Nanoindentation Process for Hyperfine Pit Structure Fabrication (극미세 점 구조체 제작을 위한 열간나노압입공정에서 평판형 폴리머소재의 기계적 특성 평가)

  • Lee, E.K.;Lee, S.M.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.108-111
    • /
    • 2007
  • It's important to measure quantitative properties about thermal-nano variation conduct of polymer for producing high quality components using NIL process. NanoScale indents can be used ad cells for molecular electronics and drug deliver, slots for integration into nanodevices, and defects for tailoring the structure and properties. In this study, it's to evaluate mechanical characteristic of polymer such as PMMA and PC at high temperature for manufacture of nano/micro size of polymer using indenter at high temperature. At high temperature mechanical properties of polymer have extreme variation. Because heating the polymer, it becomes softer than room temperature. In this case it is especially important to study for mechanical properties of polymer at high temperature.

  • PDF

High-Temperature Oxidation Behavior of Commercial Pure Titanium in Mixed Gases (혼합가스 분위기 중에서 공업용 순 타이타늄의 고온산화 거동)

  • Park, S.H.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.44-50
    • /
    • 2007
  • The oxidation behavior of commercial pure titanium is investigated in the temperature range of $727^{\circ}C{\sim}950^{\circ}C$ in mixed gases. The weight change is measured by TGA during oxidation in mixed gases. The oxidation behavior indicated by weight gain or the growth of oxide layer is based on the linear rate law at high temperatures. The structure of the oxide scale formed during oxidation is analysed by optical microscopy, electron probe microanalyzer, scanning electron microscope and x-ray diffraction. Oxide scales have a $TiO_2$ structure, and are constituted with multi-layered or two layered porous external one and a dense internal one. Ti-O solid solution region is formed at the interface of metal and scale layer. The formation of oxide scale is influenced by the oxidation temperature, time, crystal structure and the condition of atmosphere.

  • PDF

Initial growth mode of ultra-thin Al films on a W(110) surface at high temperatures

  • Choi, Dae Sun;Park, Mi Mi
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.228-231
    • /
    • 2015
  • We investigated the adsorption structures and the initial growth mode of ultra-thin Al films on a W(110) surface at a high temperature. When Al atoms were adsorbed on the W(110) at the substrate temperature of 1100 K and with coverage of 0.5ML, Al atoms formed a p($2{\times}1$) double-domain structure. When the coverage was 1.0 ML, the double domain of a hexagonal structure (fcc(111) face) rotated ${\pm}5^{\circ}$ from the [100] direction of the W(110) surface and another distorted hexagonal structure were found. Low-energy electron diffraction results along with ion scattering spectroscopy results showed that the Al atoms followed the Volmer-Weber growth mode at a high temperature.

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

Development of the High Performance Thermoelectric Modules for High Temperature Heat Sources

  • Jinushi, Takahiro;Okahara, Masahiro;Ishijima, Zenzo;Shikata, Hideo;Kambe, Mitsuru
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.79-80
    • /
    • 2006
  • From a viewpoint of heat stress at high temperatures and contact thermal resistance, it is confirmed that the optimal structure is the skeleton structure using Cu substrate on the cooling side, which has excellent heat conductivity and the optimal installation method is to adopt a carbon sheet and a mica sheet to the high temperature side, where Si grease is applied to the low temperature side, under pressurized condition. The power of the developed modules indicated 0.5W in an $FeSi_2$ module and 3.8 W with a SiGe module at 823K, respectively.

  • PDF

Calculation of Joule heating and temperature distribution generated in the KSTAR superconducting magnet structure

  • Seungyon Cho;Park, Chang-Ho;Sa, Jeong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 2002
  • Since the KSTAR superconducting magnet structure should be maintained at a cryogenic temperature of about 4 K, even a small amount of heat might be a major cause of the temperature rise of the structure. The Joule heating by eddy currents induced in the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rise of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increased as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure, the maximum temperature was obtained from the PF fast discharging scenario. This means that the vertical disruption and PF fast discharging scenarios are the major scenarios for the design of TF and CS coil structures, respectively. For the reference scenario, the location of maximum temperature spot changes according to the transient current variation of each PF coil.

Structure Analysis on Thermal Deformation of Super Low Temperature Liquefied Gas One-module Vaporizer (초저온 액화가스 단일 모듈 기화기의 열변형 구조해석)

  • Park, G.T.;Lee, Y.H.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.22-28
    • /
    • 2007
  • Liquefied gas vaporizer is a machine to vaporize liquefied gas such as liquid nitrogen($LN_{2}$), liquefied natural gas(LNG), liquid oxygen($LO_{2}$) etc. For the air type vaporizer, the frozen dew is created by temperature drop (below 273 K) on vaporizer surface. The layer of ice make a contractions on vaporizer. The structure analysis on the heat transfer was studied to see the effect of geometric parameters of the vaporizer, which are length 1000 mm of various type vaporizer. Structure analysis result such as temperature variation, thermal stress and thermal strain have high efficiency of heat emission as increase of thermal conductivity. As the result, Frist, With-fin model shows high temperature distribution better than without-fin on the temperature analysis. Second, Without-fin model shows double contractions better then with-fin model under the super low temperature load on the thermal strain analysis. Third, Vaporizer fin can be apply not only heat exchange but also a stiffener of structure. Finally, we confirm that All model vaporizer can be stand for sudden load change because of compressive yield stress shows within 280 MPa on thermal stress analysis.

  • PDF