• Title/Summary/Keyword: High Temperature Region

Search Result 1,520, Processing Time 0.025 seconds

Methodology of Non-Destructive Examinations on Hydraulic Expansion Region of Steam Generator Tubes (증기발생기 세관 수압확관부 비파괴검사 방법론)

  • Kim, Chang-Soo;Jung, Nam-Du;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.29-33
    • /
    • 2008
  • As the measures of nuclear power plant utilities and manufacturers to reduce the defects of tube expansion region during manufacturing steam generators, many types of NDEs(Non-Destructive Examinations) are conducted to inspect the expansion region. The expansion region of tube is subject to degrade because of stress concentration induced by tube expansion, sludge pile and high temperature. So the inspections for tube expansion region have been reinforced. Liquid penetrant test, helium leak test, Bobbin profile test and hydraulic test are performed to confirm the integrity of tube expanded by hydraulic expansion method. Liquid penetrant test and helium leak test are used to inspect seal weld region on tubesheet end part. Bobbin Profile test is used to inspect fully the expanded region of steam generator tube. Hydraulic test finally verifies the integrity of seal weld region on tubesheet end part.

  • PDF

High Temperature Deformation Behavior and Formability of Zr-Cu-Al-Ni Bulk Metallic Glass (Zr 계 비정질 합금의 고온 변형거동과 성형성 예측)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.123-126
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$ (at. %) bulk metallic glass (BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure thru X-ray diffraction (XRD) and differential scanning calorimetry (DSC). A series of compression tests has consequently been performed in supercooled liquid temperature region to investigate the high temperature deformation behavior. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

  • PDF

High Temperature Deformation Behavior and Estimation for Formability of Zr55Cu30Al10Ni5 Bulk Metallic Glass (Zr계 비정질 합금의 고온 변형거동과 성형성 예측)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.309-312
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$(at. %) bulk metallic glass(BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure with the analysis of X-ray diffraction(XRD) and differential scanning calorimetry(DSC) data. A series of compression tests has consequently been performed in the region of supercooled liquid temperature to investigate the behavior of high temperature deformation. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

Line-profile Formula in the Carbon Nanotubes by Electron Spin Resonance

  • Park, Jung-Il;Lee, Haeng-Ki
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • The line-width of carbon nanotubes (CNTs) was studied as a function of the temperature at a frequency of 9.49 GHz in the presence of external electromagnetic radiation. The relative frequency dependence of the absorption power is obtained with the projection operator technique (POT) proposed by Kawabata. The line-width increased as the temperature increased in the high-temperature region (T>200 K). The scattering is little affected in the low-temperature region (T<200 K) because there is no correlation between the resonance field and the Fermi-Dirac distribution function. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition problems.

A Study on Method for Improving Reproducibility in the Ultrasonic Measurement of Bone Mineral Density (초음파 골밀도 측정에서 재현성 향상 방법에 관한 연구)

  • Shin, Jeong-Sik;Ahn, Jung-Hwan;Kim, Hwa-Young;Kim, Hyung-Jun;Han, Seung-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1430-1437
    • /
    • 2005
  • It is very important to achieve a high reproducibility in the ultrasonic measurement of bone mineral density. In this study, we examined number of sampling waveform, control of temperature, diameter of region of interest as factors to improve reproducibility. We decided the optimal number of waveforms to be converted to frequency domain as period of 1. We have minimized the effects of variable temperature and constrained generation of micro bubble by keeping temperature within a range of $32\pm0.5^{\circ}C$ with a precise temperature controlling algorithm. We also found the optimal diameter of region of interest to be 13mm. In this paper, we demonstrated the improved reproducibility by controlling various factors affecting the ultrasonic measurement of bone mineral density.

Effects of Temperature on Dielectric Breakdown Strength of Epoxy Compounds Filled with Natural Zecolite

  • Kim, You-Jeong;Park, Hyeong-Ki;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.544-547
    • /
    • 1999
  • To develop the better insulants. the zeolite particle, which is aluminosilicate mineral, was filled In the DGEBA/MDA/SN epoxy resin system. Dynamic DSC curves of cured specimens with various contents of zeolite were observed and the glass transition temperature(T$_{g}$) was obtained. According to this result, we could carry out the experiment concerned with the dielectric breakdown strength around T$_{g}$ and find the limit temperature for the application of the DDEBA/MDA/SN system filled with natural zeolite. T$_{g}$ increased with the content of zeolite. As the temperature increased, the dielectric breakdown strength decreased rapidly, in the region of T$_{g}$. At the high temperature, the deterioration by electrical stress was activated. The diameter of puncture at the high temperature was larger 7han that at the room temperature.erature.

  • PDF

Combustion Characteristics of a Turbulent Non-premixed Flame Using High Preheated Air (고온 예열 공기에 의한 난류 비예혼합 화염의 연소 특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.561-568
    • /
    • 2003
  • An experiment using high preheated air in a turbulent non-premixed flame was performed to investigate the effects of high preheated air on the combustion characteristics. Combustion using high preheated and diluted air with flue gas is a new technology which enables NO emission to be reduced. In this study, Na was used as diluent and propane as fuel. Combustion characteristics, especially the distributions of the flame temperature, NO concentration and OH radical intensity were examined under the condition of 300 K, 600 K, 1000 K in terms of the combustion air temperature, and also under the condition of the dilution level from 21% to 13% in terms of oxygen concentration. As the preheated air temperature increased, it appeared that the flame length became shorter, maximum flame temperature increased, the reaction region moved to upstream, and NO concentration increased, but the flame temperature's fluctuation was reduced. In opposite, it was shown with decrement of oxygen concentration at the maximum temperature that both maximum value and the gradient of the flame temperature decreased, and NO emission also decreased considerably, but its fluctuation became larger, being inclined to be unstable.

A Study on Fatigue Crack propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Delta K$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Delta K$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperature are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

A Study on Conductivity Characteristics of the Insulating Oil for X-ray Tube Housing (X선장치용(線裝置用) 절연유(絶緣油)의 도전특성(導電特性)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Duck-Chool;Chung, Yon-Tack
    • Journal of radiological science and technology
    • /
    • v.9 no.1
    • /
    • pp.73-81
    • /
    • 1986
  • This paper carried out an experiment on the characteristics of time, temperature, electric field and the dependense of electrode materials and gap length by the conduction current of the insulating oil used for x-ray tube housing. The obtained results can be summarized as following: 1. In the x-ray tube housing insulating oil with vacuum condition, conduction current is declined more than the x-ray tube housing insultaing oil with the air, and is held stable states. 2. At the low electric field the higher temperature of the x-ray tube housing insulating oil is increased, the more conduction current. 3. The dependence of electrode material is appeared at the low electric field and the short gap length than the high and the long with Fe> Cu >Al. 4. At the I-E characteristics, the low electric field than 1000 [V/cm] is appeared Ohm's law region, and the high become saturation region. 5. At the same electric field, the longer gap length become, the more conduction current is increased, and the same applied voltage, the longer, the less conduction current is decreased, the less low than high temperature x-ray tube housing insulating oil.

  • PDF

Effect of High Temperature Degradation on Microstructure and High Temperature Mechanical Properties of Inconel 617 (Inconel 617의 고온열화에 따른 미세구조 및 고온 기계적 특성)

  • Jo, Tae-Sun;Lee, Seung-Ho;Kim, Gil-Su;Kim, Se-Hoon;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.268-272
    • /
    • 2007
  • Inconel 617 is a candidate tube material for high temperature gas-cooled reactors(HTGR). The microstructure and mechanical properties of Inconel 617 were studied after exposure at high temperature($1050^{\circ}C$). The dominant oxide layer was Cr-oxide. The internal oxide and Cr-depleted region were observed below the Cr-oxide layer. The depth of Cr-depleted zone and internal oxide increased with exposure time. The major phases of carbides are $M_{23}C_6\;and\;M_6C$. The composition of $M_{23}C_6\;and\;M_6C$ were determined to be Cr-rich and Mo-rich, respectively. $M_6C$ carbide is more stable than $M_{23}C_6$ at high temperature. From the results of high temperature compression test, there were no significant changes in hardness and yield strength upon increasing exposure time.