• 제목/요약/키워드: High Temperature Heat Pump

검색결과 172건 처리시간 0.029초

NMR 자석용 고온 초전도 내부 코일을 위한 플럭스 폄프에 대한 실험 (Experiment of Flux pump for High Temperature Superconductor Insert coils of NMR magnets)

  • 정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권2호
    • /
    • pp.15-20
    • /
    • 2001
  • This paper describes a model flux pump experiment recently performed at the MIT Francis Bitter Magnet Laboratory. The results of the model flux pump will be used in the development of a prototype flux pump that will be couple to a high-temperature superconductor (HTS) insert coil of a high-field NMR (Nuclear Magnetic Resonance) magnet, Such an HTS insert is unlikely to operate in persistent model because of the conductors low index(n) The flux pump can compensate fro field decay in the HTS insert coil and make the insert operate effectively in persistent mode . The flux pump, comprised essentially of a transformer an two switches. all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A model flux pump has been designed. fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting model flux pump is made of Nb$_3$ Sn tape, The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid: the effluent helium vapor maintains the thermal stability of the flux pump.

  • PDF

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

신재생에너지 기기로서 히트펌프의 신재생에너지 생산량 (Renewable Energy Production by Heat Pump as Renewable Energy Equipment)

  • 홍희기;최준영;임신영
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.551-557
    • /
    • 2017
  • Most European economies, Japan, and many governments have made it a major policy to expand the green business by disseminating heat pump technology, which has a large $CO_2$ reduction effect. The heat pump of all heat sources has been recognized as renewable energy and the policy to encourage has been implemented. In the recently revised Renewable Energy Law, the hydrothermal source (surface sea water) heat pump was newly included in renewable energy. In addition, the scope of application of heat pumps has expanded in the mandatory installation of renewable energy for new buildings, remodeling buildings, and reconstructed buildings based on this law. However application to heat pumps using all natural energy as heat source has been put off. In this revision, the ratio of renewable energy to the total energy produced by the heat pump was fixed at 73%, which depends on coefficient of performance of heat pump. The ratio of renewable energy is $1-1.8/COP_H$, and should be calculated including the coefficient of performance of the heat pump. Using a high efficiency heat pump or a high-temperature heat source increases the coefficient of performance and also reduces $CO_2$ emissions. It is necessary to expand the application of heat pumps as renewable energy equipment and to improve the correct calculation of renewable energy production.

전동 워터펌프의 열유동 특성 해석에 관한 연구 (A Study on Thermo-flow Characteristics Analysis of Electric Water Pump)

  • 김성철;송형근
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.

천연혼합냉매를 이용한 압축/흡수식 고온히트펌프의 실험적 연구 (Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture)

  • 김지영;박성룡;백영진;장기창;나호상;김민성;김용찬
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1367-1373
    • /
    • 2011
  • 본 연구에서는 천연냉매를 적용한 압축/흡수식 하이브리드 고온제조 히트펌프를 실험적으로 연구한 결과를 제시하였다. 압축/흡수식 히트펌프는 기존의 증기압축 히트펌프에 비해 고온영역을 포함한 넓은 생산온도범위, 높은 승온기능, 다양한 용량 제어방법 등 여러가지 장점을 가지고 있다. 제작된 하이브리드 히트펌프는 현재 실제 산업현장에 적용하기 이전의 초기 시제품 단계로 실험실에 설치하여 운전하였으며, 주요 구성부품으로는 이단압축기, 흡수기, 재생기, 과열냉각기, 용액 열교환기, 용액펌프, 기액분리기/정류기 등이다. 성능실험에서 $50^{\circ}C$의 열원을 고온 및 저온열원으로 사용한 결과 $90^{\circ}C$ 이상의 고온수 토출과 10 kW급의 난방 용량을 얻을 수 있었다. 혼합냉매의 성분비 변화에 따른 압축기/펌프 유량의 순환비 변화 및 다양한 성능변화를 실험적으로 관찰하였으며, 시스템의 효율과 용량에 있어 최적 성분비가 존재함을 확인하였다.

지하공기-물 직접접촉식 열교환기를 구비한 히트펌프의 성능 (Performance of Underground Air-to-Water Heat Pump with Direct Contact Heat Exchanger)

  • 김영화;강연구;성문석;유영선;김종구;장재경
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.172.1-172.1
    • /
    • 2010
  • In Jeju, underground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But greenhouse heating method by direct supply of underground air has several problems as like low temperature below $20^{\circ}C$ or high relative humidity over 90%. The underground air is inadequate in heating of crops such as mangos, oranges with the growing temperature over $20^{\circ}C$. Also if the relative humidity of greenhouse is kept with over 90%, diseases can strike almost of the crops. And also the ventilation loss becomes larger because the air pressure of inside greenhouse by direct supply of underground air is higher. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analyzed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air in this heat pump system were 46.5~31.4 kW, 34.9~20.9 kW respectively.

  • PDF

해수온도차에너지이용 냉난방시스템 운전특성에 관한 연구 (A Study on Operating Characteristics of Heat Pump System Using Sea Water Sources)

  • 장기창;백영진;윤형기;나호상
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 2009
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

CFD를 통한 고효율 히트펌프 개발을 위한 실험장치 (Experimental equipment for high efficiency heat pump development by CFD)

  • 김종열
    • 한국응용과학기술학회지
    • /
    • 제37권5호
    • /
    • pp.1402-1408
    • /
    • 2020
  • 에너지를 절감하기 위해 고효율 히트펌프를 개발하기 위한 많은 연구가 이루어지고 있으며, 실외기 코일에 발생하는 서리가 발생하는 현상을 줄이거나 없애기 위한 연구도 동시에 이루어지고 있다. 계절에 관계없이 히트펌프의 실외기에 서리가 발생하지 않는 연구를 진행할 수 있도록 자연상태와 동일한 조건에서 실험할 수 있는 항온챔버를 구축하였다. 실험장치의 타당성을 검증하기 위해 실험장치인 항온챔버 내의 실외기 앞 덕트의 직선 길이를 3가지 조건으로 나누어 시뮬레이션 하였다. 그 결과 덕트 관경의 10배 길이만큼 직선 공간을 확보해야 한다는 것을 알게 되었다.

폐열이용 열펌프시스템의 성능에 관한 연구 (Performance Analysis on a Heat Pump System using Waste Heat)

  • 박윤철;송뢰;고광수
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.53-60
    • /
    • 2018
  • This study was conducted for analysis of a heat pump system using waste heat in an enclosed space such as a green house. The model was developed with mathematical equations in literature and Engineering Equation Solver (EES) was used to get the solution of the developed equations. The simulation results have 5% of reliability comparing the results with actual test data of heat pump system's dynamic operation. The operating performance of the system was calculated with variation of working fluid temperature in the thermal storage tank such as $25^{\circ}C$, $35^{\circ}C$, $45^{\circ}C$ and $55^{\circ}C$. As a result, the system's the highest total heating capacity shows 280 kWh and the storage tank's operating time decreased as the starting storage tank's temperature was high.

SMART 원자로용 냉각재 순환펌프의 온도특성에 관한 연구 (A Study on the Temperature Characteristics of Main Coolant Pump for System-integrated Modular Advanced Reactor)

  • 구대현;방덕제;강도현;김종인;조윤현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권5호
    • /
    • pp.320-326
    • /
    • 2000
  • The canned motor of 3-phase induction is used for main coolant pump(MCP). The type of motor is canned-motor that stator and rotor are welded by sealed can. So, cooling water flows in the air gap of the canned motor as an independent cycling cooling system from the air gap to yoke of the motor to prevent high temperature of stator can and to lubricate bearing. Heat exchange is occurred between cooling water in the air gap and cooling water from the exterior pump to prevent rising of temperature in the motor. I has to analyze the characteristics of can exactly because the loss and the heat in the can are very important to design MCP. Therefore, thermal analysis is studied considering the effect of eddy-current los induced in the can.

  • PDF