• 제목/요약/키워드: High Temperature Hardness

검색결과 985건 처리시간 0.026초

국내산 잣나무 열압밀화재의 경도와 치수안정성 (Hardness and Dimensional Stability of Thermally Compressed Domestic Korean Pine)

  • 황성욱;조범근;이원희
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권1호
    • /
    • pp.68-75
    • /
    • 2015
  • 국내산 잣나무재의 바닥재로의 이용을 위해 열압밀화를 실시하였다. 재질평가로서 표면경도와 치수안정성을 조사하였다. 압축률 50%로 열압밀화를 실시하여 비중 0.82~0.92의 고비중재를 얻을 수 있었다. 열압온도의 증가와 함께 표면경도는 증가하였으며, 온도 $160^{\circ}C$에서 30분간 열압밀화 한 시험편의 표면경도는 $23.6N/mm^2$로서 가장 높은 값을 나타내었다. 그러나 $180^{\circ}C$ 이상의 고온에서는 목재표면의 열분해에 의해 오히려 경도가 감소하였다. 열압온도의 증가는 치수회복률의 감소를 야기하였으며, 열압온도 $200^{\circ}C$에서는 14.9%로 가장 낮은 치수회복률을 나타내었다. 열압시간의 증가 또한 치수회복률 감소에 영향을 미치지만 열압온도에 의한 영향이 더욱 지배적이었다.

고온 이온주입된 크롬강의 표면특성변화 (The change of surface properties of nitrogen implanted chromium steel in high temperature environment)

  • 이찬영;김범석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.403-403
    • /
    • 2008
  • This article reports changes in the mechanical properties of chromium steel after nitrogen implantation at high temperature. The samples are implanted with 120keV N-ion at doses ranging from $1\times1080$ to $4\times1080ions/cm^2$ and at substrate temperature ranging from 25 to $400^{\circ}C$. Nano-hardness and AES(Auger electrons spectroscopy) were measured from nitrogen ion implanted layer. The sliding wear and impact wear properties of the implanted samples were also measured. The results revealed that the hardness and mechanical properties of ion implanted samples depend strongly on the ion doses and implantation temperature. The hardness of the nitrogen implanted sample with 120keV, $4\times10^{18}ions/cm^2$, $335^{\circ}C$ was measured to be approximately 20 GPa, which is approximately 5 times higher than that of un-implanted sample (H=3.8 GPa). Also, the sliding wear and impact wear properties of nitrogen implanted samples were greatly improved. Detailed experiment results will be presented.

  • PDF

텅스텐 특성에 대한 소결온도의 영향 (Effect on Mechanical Properties of Tungsten by Sintering Temperature)

  • 박광모;이상필;배동수;이진경
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.

발전설비 고온부에서 사용되는 스터드 볼트의 교체기준 설명 (Establishment of Replacement Criteria for Stud Bolts using on High Temperature in the Power Plants)

  • 정남용;김문영
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.279-286
    • /
    • 2000
  • The stud bolts tend to degrade faster by high temperature(over 45$0^{\circ}C$). Therefore, replacement cycle inspection of stud bolts were carried out various method such as ultrasonic test(UT), magnetic test(MT), wobble test, visual test and hardness test. Especially, wobble test method has been applied to determine replacement evaluation criteria of stud bolt after long time operation. We applied three different methods on the three site and the obtained data are compared with the results from the evaluation methods. From the results, the replacement criteria for stud bolts under high temperature in power plants are proposed.

  • PDF

금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향 (Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel)

  • 김제돈;김경식
    • 열처리공학회지
    • /
    • 제26권1호
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.

열분석법에 의한 Cu를 함유한 HSLA강의 시효 거동에 관한 연구 (A Study on the Ageing Behavior of Cu-bearing HSLA steels by thermal analysis)

  • 박태원;심인옥;김영우;강정윤
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1994년도 특별강연 및 춘계학술발표 개요집
    • /
    • pp.44-47
    • /
    • 1994
  • The ageing behavior of Cu-bearing HSLA steels was studied by using Differential scanning calorimetry(DSC), Transmission electron microscopy and hardness tester. Two heat evolution peaks were observed during DSC scans over the temperature range of 25~590$^{\circ}C$ at a heating rate of 5$^{\circ}C$/min. The peaks appeared in low (241∼319$^{\circ}C$ : HSLA-A, 224∼310$^{\circ}C$ : HSLA-B) and high temperature (514∼590$^{\circ}C$ : HSLA-A, 451∼558$^{\circ}C$ : HSLA-B) are attributed to the formation of coherent Cu-clusters and noncoherent $\varepsilon$-Cu phase, respectively. It was confirmed that as ageing proceeds, the coherent bcc Cu-clusters transform to noncoherent fcc $\varepsilon$-Cu phase. In the case of the ageing to peak hardness at 300$^{\circ}C$ and 400$^{\circ}C$, the coherent Cu-clusters contributed to the hardening. As ageing time and temperature increase over peak hardness, noncoherent $\varepsilon$-Cu are formed and hardness decreases.

  • PDF

비대칭 마그네트론 스퍼터링 방법으로 제조된 TiC 박막의 기판온도 영향 (Influence of Substrate Temperature on the TiC Thin Films Prepared by Unbalanced Magnetron Sputtering Method)

  • 박용섭;이재형
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.284-287
    • /
    • 2013
  • In this work, we have fabricated TiC films by using unbalanced magnetron sputtering method with graphite and Ti targets for contact strip application of electric railway. TiC films were deposited with various substrate temperatures. We investigated various properties of TiC films prepared with various substrate temperatures, such as the hardness, surface roughness, friction coefficient, resistivity, FESEM (Field Emission Scanning Electron Microscopy), HRTEM (High Resolution Transmission Electron Microscopy) and XPS (X-ray Photoelectron Spectroscopy). The hardness and friction coefficient properties of TiC films were improved with increasing substrate temperature. These results indicate that the improvement of hardness and resistivity is related to the increase of sp2 clusters in TiC films. And also, the resistivity value of TiC films were decreased with increasing substrate temperature.

분말고속도공구강 JYPS-23에서 열처리조건에 따른 3점 굽힘피로특성 (Three Point Bending Fatigue Property with Heat Treatment Condition in a Powder Metallurgical High Speed Steel JYPS-23)

  • 홍성현;배종수;김용진
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.131-136
    • /
    • 2000
  • The effect of tempering temperature on the three point bending fatigue behavior of a P/M high speed steel JYPS-23 (1.28% C, 4.20% Cr, 6.40% W, 5.00% Mo, 3.10% V, bal. Fe) was investigated. The number of cycles to failure of the specimen austenitized at $1175^{\circ}C$ drastically increased with increasing tempering temperature. As tempering temperature increased from 500 to $620^{\circ}C$, the volume fraction and average size of carbides (MC or M6C) did not significantly changed, while hardness decreased drastically. The reduced hardness is due to the softening of matrix, which increased the resistance of the fatigue crack propagation. For a practical application, powder compacting test were also conducted with the P/M high speed steel punches tempered at 500, 580, and $620^{\circ}C$. The number of compacting cycles to failure of the punches also increased with increasing tempering temperature.

  • PDF

열간 압연용 고속도강 롤의 고온 특성 (High Temperature Properties of the High Speed Steel Roll of Hot Finishing Mill)

  • 김태우;최진원;김동규
    • 한국주조공학회지
    • /
    • 제16권2호
    • /
    • pp.124-131
    • /
    • 1996
  • High temperature properties such as hot hardness and thermal fatigue resistance of high speed steel roll of hot finishing mill have been investigated. Two kinds of roll having compositions, Fe-1.75%C-5.9%Cr-1.74%Mo-4.94%V-2.03%W(A specimen) and Fe-2.27%C-8.86%Cr-2.91%Mo-3.92%V-1.86%W(B specimen)were prepared for investigating the microstructure and crack propagation mode. A specimen has greater amounts of $M_7C_3$ type carbides and less amounts of MC type carbides in comparison with B specimen. Hot hardness showed sudden decrease over $400^{\circ}C$, resulting in the hardness decrease of 50% at the temperature of $600^{\circ}C$, and showed little variation with time at $500^{\circ}C$ and $800^{\circ}C$. Thermal crack was developed at $550^{\circ}C$ in A specimen and $600^{\circ}C$ in B specimen.

  • PDF

중탄소 저합금강의 인장성질에 미치는 템퍼링의 영향 (Effects of Tempering on Tensile Properties of Medium-Carbon Low-Alloy Steels)

  • 이영국
    • 열처리공학회지
    • /
    • 제12권4호
    • /
    • pp.327-337
    • /
    • 1999
  • A series of Ni-Cr-Mo alloy steels were austenitized, quenched to martensite, and tempered at various temperature and time conditions. Tensile testing was conducted at room temperature with cylindrical specimens, and hardness was measured using Rockwell hardness tester. In the tempering stage I, high strain hardening and yield strength accounted for the high ultimate strength and hardness. In the tempering stage II, strengths and hardness linearly decreased with increasing tempering temperature. Specimens tempered in the temperin stage III showed incipient discontinuous yielding and tensile strengths only slightly higher than yield strengths. Ductilities decreased slightly in specimens tempered in the tempered martensite embrittlement range, and severely decreased in specimens tempered for 10 hours at $500^{\circ}C$ in the temper embrittlement range. Specimens tempered at $600^{\circ}C$ for 10 hours showed recrystallized microstructures, a number of fine dimples, and increased strain hardening, probably due to the precipitation of alloy carbides. The simple formulae for the mechanical properties of these steels were suggested as a function of carbon content and Hollomon-Jaffe tempering parameter.

  • PDF