• Title/Summary/Keyword: High Temperature Flow Stress

Search Result 220, Processing Time 0.029 seconds

Study on High Temperature Processing of Ti-10Ta-10Nb Alloys (Ti-10Ta-10Nb 합금의 고온 가공 특성에 관한 연구)

  • 반재삼;이경원;유영선;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.418-421
    • /
    • 2003
  • Specimens of Ti-10Ta-10Nb have been hot upset forged after heating to either the $\alpha$+$\beta$ and $\beta$-phase field. The variety temperatures (At 650, 700, 750, 800, 85$0^{\circ}C$) and strain rates (At 0.001, 0.01. 0.1, 1, 10 $s^{-1}$ ) were used. On the basis of flow stress data obtained as a function of temperature and strain rate in compression, a processing map for hot working has been developed. At strain rates lower than about 0.1 $s^{-1}$ and almost temperatures, processing efficiency exhibited high, but at 0.001 $s^{-l}$, and temperature 80$0^{\circ}C$, low because the Shear band has occurred. On the basis of the processing map, the optimum processing routes available for hot working of this material are outlined.d.

  • PDF

A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect (크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석)

  • 김국원;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

High Temperature Deformation Characteristics (STS 430 고온변형 특성에 관한 연구)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.179-182
    • /
    • 2000
  • The dynamic softening behavior of type 430 ferritic stainless steel could be characterized by the hot torsion test in the temperature range of 900-110$0^{\circ}C$ and the strain rate range of 0.05-5/sec. It is found that the continuous dynamic recrystallization (CDRX) was a major dynamic softening mechanism. The effects of process variables strain ($\varepsilon$) stain rate($\varepsilon$)and temperature (T) on CDRX could be individually established from the analysis of flow stress curves and microstructure. The effect of CDRX individually established from the analysis of flow stress curves and microstructure. The effect of CDRX increased with increasing strain rate and decreasing temperature in continuous deformation. The multipass deformation processes were performed with 10 pass deformations. The CDRX effect occurred in multipass deformatioon. The grain refinement could be achieved from multipass deformation The grain refinement increased with increasing strain rate and decreasing temperature. Also the CDRX in multipass deformation was affected by interpass time and pass strain. The total strain was to be found key parameter to occur CDRX.

  • PDF

DESIGN STUDY OF AN IHX SUPPORT STRUCTURE FOR A POOL-TYPE SODIUM-COOLED FAST REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1323-1332
    • /
    • 2009
  • The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity.

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Analysis of Start-up Characteristics of a Heat Recovery Steam Generator Considering Thermal Constraints (열적 제한요소를 고려한 열회수 증기발생기의 시동 특성 해석)

  • Kim, Young Il;Kim, Tong Seop;Kim, Jae Hwan;Ro, Sung Tack;Kauh, Sang Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1410-1417
    • /
    • 1999
  • A thorough understanding of the transient behavior during start-up is essential in the design and operation of the heat recovery steam generator(HRSG). During this period of time, material that is exposed to high temperature and experiences a large temperature variation is subject to high thermal stress. In this work, a transient formulation of the HRSG is constructed including the estimation of the thermal stress and fatigue of the drum wall. Start-up behavior of a single-pressure HRSG is analyzed and the effect of bypassing part of the gas turbine exhaust flow on the thermal stress evolution is examined. It is found that the modulation of the gas flow rate using a bypass damper is very useful in view of reducing the thermal stress of the drum and ensuring the fatigue lifetime.

Effects of Strain Rate and Temperature on the Hot Strength for Single Phase Cu-Zn Alloy (단상조직을 갖는 Cu-Zn합금의 고온강도에 미치는 변형속도와 온도의 영향)

  • 권용환;유연철
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.159-168
    • /
    • 1995
  • The torsion tests in the range of $550~800^{\circ}C$, $5.0{\times}10^{-3}~5.0{\times}10^0/sec$ were performed to study the effects of strain rate$(\.{\varepsilon})$ and temperature(T) on the hot strength of Cu-Zn alloy. High temperature flow stresses of this alloy increased with increasing $\.{\varepsilon}$ and/or decreasing T, and than the more grain refinement could be obtained. The flow curves exhibited a peak followed by a steady steady state regime as a result of dynamic recrystallization. The hot strength dependence of $\.{\varepsilon}$ and T was described by a hyperbolic sine law, $\.{\varepsilon}=A(sinh0.017{\sigma})^4.81$exp(-216KJ/mol). Hot strength could be reduced at the arbitary condition, $\.{\varepsilon}$ and T, by constitutive parameter Z(Zenner-Hollomon parameter), $Z=A(sinh{\alpha}{\sigma})^n=\.{\varepsilon}$exp(Q/RT).

  • PDF

A Study on Structural Analysis of Globe Valve for LNG Carrier (LNG선박용 글로브 밸브 구조해석에 관한 연구)

  • Kim, Dong-Kyoon;Kim, Jeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.1013-1019
    • /
    • 2007
  • This paper is about structural analysis of globe valve for controlling cryogenic LNG's flow or stop in normal temperature. The used valve is demanded safety resistance for inner pressure and temperature variation caused by using it in cryogenic, high pressure surrounding. This study evaluates for safety resistance for inner pressure and temperature variation by heat transfer analysis in cryogenic surrounding, heat stress analysis in temperature variation and deformation analysis in high pressure.

Dynamic Behavior of SM45C at High Strain-rate and High Temperature (고온 고변형률속도에서 SM45C의 동적 거동)

  • Yang, Hyun-Mo;Min, Oak-Key
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1093-1099
    • /
    • 2007
  • A compressive split Hopkinson pressure bar (SHPB) technique is used to investigate the dynamic behavior of SM45C at high temperature. A radiant heater, which consists of one ellipsoidal reflector and one halogen lamp, is used to heat the specimen. Specimens are tested from $600^{\circ}C$ to $1000^{\circ}C$ at intervals of $100^{\circ}C$ at a strain-rate ranging from 1100/s to 1150/s. A critical phenomenon occurs between $700^{\circ}C$ and $750^{\circ}C$ in SM45C. This phenomenon results in the drastic drop in a flow stress. In a modified Johnson-Cook constitutive equation, a reducer function is used to take into account for the effect of the drastic drop in a flow stress. A reducer function, which is dependant on the temperature as well as the strain, is introduced and the parameters of the modified Johnson-Cook constitutive equation are determined from test results.

Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel (고질소강 오스테나이트계 스테인레스강의 압축변형특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF