• Title/Summary/Keyword: High Temperature Electrolysis of Steam(HTES)

Search Result 1, Processing Time 0.015 seconds

Investigation of the La1-x(Ca or Sr)xCrO3x=0 and 0.25) Interconnect Materials for High Temperature Electrolysis of Steam (고온수증기전기분해용 La1-x(Ca or Sr)xCrO3(x=0 and 0.25) 연결재 재료 연구)

  • Jeong, So-Ra;Kang, Kyoung-Soo;Park, Chu-Sik;Lee, Yong-Taek;Bae, Ki-Kwang;Kim, Chang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1135-1141
    • /
    • 2008
  • The $La_{1-x}(Ca\;or\;Sr)xCrO_3$(x=0 and 0.25) interconnect materials for high temperature electrolysis of steam were investigated in views of sinterability and electrical conductivity. $LaCrO_3$, $La_{0.75}Ca_{0.25}CrO_3$ (LCC), and $La_{0.75}Sr_{0.25}CrO_3$ (LSC) powders were synthesized by coprecipitation method. Crystal structure was confirmed by X-ray diffraction (XRD). The sintering characteristics were analyzed by relative density and scanning electron microscopy. The electrical conductivity was measured by a DC four probe method. From the analyses of relative densities, it was found that the doped $LaCrO_3$ showed better sinterability than $LaCrO_3$ and the those sinterability increased with decrease of those particle sizes. The XRD results at different sintering temperatures for LCC and LSC revealed that the sinterability is closely related to the second phase transformation, that is, the second phase melting above $1,300^{\circ}C$ for LCC and $1,400^{\circ}C$ for LSC significantly promotes the sinterability. In case of electrical conductivities of LCC and LSC, which had a similar relative density, LCC showed better electrical conductivity than LSC.