• Title/Summary/Keyword: High Temperature Detection Algorithm

Search Result 35, Processing Time 0.022 seconds

FPGA implementation of high temperature feature points extraction algorithm for thermal image (열화상 이미지에 대한 고온 특징점 추출 알고리즘의 FPGA 구현)

  • Ko, Byoung-Hwan;Kim, Hi-Seok
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.578-584
    • /
    • 2018
  • Image segmentation has been presented in the various method in image interpretation and recognition, and the image is using separate the characteristics of the specific purpose. In this paper, we proposed an algorithm that separate image for feature points detected to high temperature in a Thermal infrared image. In order to improve the processing time, the proposed algorithm is implemented to FPGA Hardware Block using the Zynq-7000 Evaluation Board environment. The proposed High-Temperature Detection Algorithm and total FPGA blocks show a decrease of a processing time result from 16ms to 0.001ms, and from 50ms to 0.322ms respectively. It is also verified similar results of the PSNR to comparing software thermal testbench and hardware ones.

Development of the Weather Detection Algorithm using CCTV Images and Temperature, Humidity (CCTV 영상과 온·습도 정보를 이용한 기후검출 알고리즘 개발)

  • Park, Beung-Raul;Lim, Jong-Tea
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.209-217
    • /
    • 2007
  • This paper proposed to a detection scheme of weather information that is a part of CCTV Images Weather Detection System using CCTV images and Temperature, Humidity. The previous Partial Weather Detection System uses how to acquire weather information using images on the Road. In the system the contrast and RGB Values using clear images are gained. This information is distributed a input images to cloud, rain, snow and fog images. That is, this information is compared the snow and the fog images for acquisition more correctness information us ing difference images and binary images. Currently, We use to environment sense system, but we suggest a new Weather Detection Algorithm to detect weather information using CCTV images. Our algorithm is designed simply and systematically to detect and separate special characteristics of images from CCTV images. and using temperature & humidity in formation. This algorithm, there is more complex to implement than how to use DB with high overhead of time and space in the previous system. But our algorithm can be implement with low cost' and can be use the system in real work right away. Also, our algorithm can detect the exact information of weather with adding in formation including temperature, humidity, date, and time. At last, this paper s how the usefulness of our algorithm.

  • PDF

Analysis of the Fog Detection Algorithm of DCD Method with SST and CALIPSO Data (SST와 CALIPSO 자료를 이용한 DCD 방법으로 정의된 안개화소 분석)

  • Shin, Daegeun;Park, Hyungmin;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.471-483
    • /
    • 2013
  • Nighttime sea fog detection from satellite is very hard due to limitation in using visible channels. Currently, most widely used method for the detection is the Dual Channel Difference (DCD) method based on Brightness Temperature Difference between 3.7 and 11 ${\mu}m$ channel (BTD). However, this method have difficulty in distinguishing between fog and low cloud, and sometimes misjudges middle/high cloud as well as clear scene as fog. Using CALIPSO Lidar Profile measurements, we have analyzed the intrinsic problems in detecting nighttime sea fog from various satellite remote sensing algorithms and suggested the direction for the improvement of the algorithm. From the comparison with CALIPSO measurements for May-July in 2011, the DCD method excessively overestimates foggy pixels (2542 pixels). Among them, only 524 pixel are real foggy pixels, but 331 pixels and 1687 pixels are clear and other type of clouds, respectively. The 514 of real foggy pixels accounts for 70% of 749 foggy pixels identified by CALIPSO. Our proposed new algorithm detects foggy pixels by comparing the difference between cloud top temperature and underneath sea surface temperature from assimilated data along with the DCD method. We have used two types of cloud top temperature, which obtained from 11 ${\mu}m$ brightness temperature (B_S1) and operational COMS algorithm (B_S2). The detected foggy 1794 pixels from B_S1 and 1490 pixel from B_S2 are significantly reduced the overestimation detected by the DCD method. However, 477 and 446 pixels have been found to be real foggy pixels, 329 and 264 pixels be clear, and 989 and 780 pixels be other type of clouds, detected by B_S1 and B_S2 respectively. The analysis of the operational COMS fog detection algorithm reveals that the cloud screening process was strictly enforced, which resulted in underestimation of foggy pixel. The 538 of total detected foggy pixels obtain only 187 of real foggy pixels, but 61 of clear pixels and 290 of other type clouds. Our analysis suggests that there is no winner for nighttime sea fog detection algorithms, but loser because real foggy pixels are less than 30% among the foggy pixels declared by all algorithms. This overwhelming evidence reveals that current nighttime sea fog algorithms have provided a lot of misjudged information, which are mostly originated from difficulty in distinguishing between clear and cloudy scene as well as fog and other type clouds. Therefore, in-depth researches are urgently required to reduce the enormous error in nighttime sea fog detection from satellite.

Development of Fuzzy Logic-Based Diagnosis Algorithm for Fault Detection Of Dual-Type Temperature Sensor for Gas Turbine System (가스터빈용 듀얼타입 온도센서의 고장검출을 위한 퍼지로직 기반의 진단 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Due to the recent increase in new and renewable energy, gas turbine generators start and stop every day to supply high-quality power, and accordingly, the life span of high-temperature parts is shortened and the failure of combustion chamber temperature sensors increases. Therefore, in this study, we proposed a fuzzy logic-based failure diagnosis algorithm that can accurately diagnose and systematically detect the failure of the sensor when the dual temperature sensor used for gas turbine control fails, and to confirm the usefulness of the proposed algorithm We tried to confirm the usefulness of the proposed algorithm by performing various simulations under the matlab/simulink environment.

Model - Based Sensor Fault Detection and Isolation for a Fuel Cell in an Automotive Application (모델 기반 연료전지 스택 온도 센서 고장 감지 및 판별)

  • Han, Jaeyoung;Kim, Younghyeon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.735-742
    • /
    • 2017
  • In this study, an effective model-based sensor fault detection methodology that can detect and isolate PEM temperature sensors fault is introduced. In fuel cell vehicle operation process, the stack temperature affects durability of a fuel cell. Thus, it is important for fault algorithm to detect the fault signals. The major objective of sensor fault detection is to guarantee the healthy operations of the fuel cell system and to prevent the stack from high temperature and low temperature. For the residual implementation, parity equation based on the state space is used to detect the sensors fault as stack temperature and coolant inlet temperature, and residual is compared with the healthy temperature signals. Then the residuals are evaluated by various fault scenarios that detect the presence of the sensor fault. In the result, the designed in this study fault algorithm can detect the fault signal.

Development of the Road Weather Detection Algorithm on CCTV Video Images using Double Decision Trees (이중결정트리를 이용한 CCTV영상에서의 도로 날씨정보검출알고리즘 개발)

  • Park, Beung-Raul;NamKoong, Sung;Lim, Joong-Tae
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.445-452
    • /
    • 2007
  • We proposed a detection scheme of weather information in CCTV video images in this paper. The scheme obtains the RGB distribution of shiny day and divide a target image into cloud, rain, snow and for RGB distributions. shiny day RGB distribution. Our scheme designed systematically to detection and separation special characteristics of images from complex weather information. Our algorithm has less overhead than the previous methods to use weather database DB at the view of time and space. And our algorithm can be use in real world system with low cost of implementation. Also, our algorithm use informations of temperature, humidity, date, and time to detect the information of weather with high quality.

Development of Land fog Detection Algorithm based on the Optical and Textural Properties of Fog using COMS Data

  • Suh, Myoung-Seok;Lee, Seung-Ju;Kim, So-Hyeong;Han, Ji-Hye;Seo, Eun-Kyoung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • We developed fog detection algorithm (KNU_FDA) based on the optical and textural properties of fog using satellite (COMS) and ground observation data. The optical properties are dual channel difference (DCD: BT3.7 - BT11) and albedo, and the textural properties are normalized local standard deviation of IR1 and visible channels. Temperature difference between air temperature and BT11 is applied to discriminate the fog from other clouds. Fog detection is performed according to the solar zenith angle of pixel because of the different availability of satellite data: day, night and dawn/dusk. Post-processing is also performed to increase the probability of detection (POD), in particular, at the edge of main fog area. The fog probability is calculated by the weighted sum of threshold tests. The initial threshold and weighting values are optimized using sensitivity tests for the varying threshold values using receiver operating characteristic analysis. The validation results with ground visibility data for the validation cases showed that the performance of KNU_FDA show relatively consistent detection skills but it clearly depends on the fog types and time of day. The average POD and FAR (False Alarm Ratio) for the training and validation cases are ranged from 0.76 to 0.90 and from 0.41 to 0.63, respectively. In general, the performance is relatively good for the fog without high cloud and strong fog but that is significantly decreased for the weak fog. In order to improve the detection skills and stability, optimization of threshold and weighting values are needed through the various training cases.

Online Burning Material Pile Detection on Color Clustering and Quaternion based Edge Detection in Boiler

  • Wang, Weixing;Liu, Sheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.190-207
    • /
    • 2015
  • In the combustion engineering, to decrease pollution and increase production efficiency, and to optimally keep solid burning material amount constant in a burner online, it needs a smart method to detect the amount variation of the burning materials in a high temperature environment. This paper presents an online machine vision system for automatically measuring and detecting the burning material amount inside a burner or a boiler. In the camera-protecting box of the system, a sub-system for cooling is constructed by using the cooling water circulation techqique. In addition, the key and intelligent step in the system is to detect the pile profile of the variable burning material, and the algorithm for the pile profile tracing was studied based on the combination of the gey level (color) discontinuity and similarity based image segmentation methods, the discontinuity based sub-algorithm is made on the quaternion convolution, and the similarity based sub-algorithm is designed according to the region growing with multi-scale clustering. The results of the two sub-algoritms are fused to delineate the final pile profile, and the algorithm has been tested and applied in different industrial burners and boilers. The experiements show that the proposed algorithm works satisfactorily.

System Implementation for PC-based Center Position Control of Strip (PC 기반 Strip 중앙 위치 제어 시스템의 구현)

  • Park, Nam-Jun;Jung, Jin-Yang;Kim, Hyun-Sool;Han, Young-Oh;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.395-397
    • /
    • 1996
  • The existing CPC(Center Position Controller) has unstably performed because of dusts on reflection panel, CCD protector contamination due to high temperature in furnace or other parameters. The reason is that the existing CPC has a Z80 processor as a CPU and only performs low level image processing as a simple edge detector. So the improvement of control system through the development of robust edge detection algorithm overcoming changes of measuring environment is needed. For this, in this study we carefully analyze the image of the strip rolled in occasion that measuring environment is changing, develop the optimal edge detection algorithm to solve the problems, generate the control signal suitable for the existing CPC(Center Position Controller), and propose the capability of application to the actual environment.

  • PDF

Feasibility Study for Detecting the Tropopause Folding Turbulence Using COMS Geostationary Satellite (천리안 위성 자료를 이용한 대류권계면 접힘 난류 탐지 가능성 연구)

  • Kim, Mijeong;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • We present and discuss the Tropopause Folding Turbulence Detection (TFTD) algorithm for the Korean Communication, Ocean, Meteorological Satellite (COMS) which is originally developed for the Tropopause Folding Turbulence Product (TFTP) from the Geostationary Operational Environmental Satellite (GOES)-R. The TFTD algorithm assumes that the tropopause folding is linked to the Clear Air Turbulence (CAT), and thereby the tropopause folding areas are detected from the rapid spatial gradients of the upper tropospheric specific humidity. The Layer Averaged Specific Humidity (LASH) is used to represent the upper tropospheric specific humidity calculated using COMS $6.7{\mu}m$ water vapor channel and ERA-interim reanalysis temperature at 300, 400, and 500 hPa. The comparison of LASH with the numerical model specific humidity shows a strong negative correlation of 80% or more. We apply the single threshold, which is determined from sensitivity analysis, for cloud-clearing to overcome strong gradient of LASH at the edge of clouds. The tropopause break lines are detected from the location of strong LASH-gradient using the Canny edge detection based on the image processing technique. The tropopause folding area is defined by expanding the break lines by 2-degree positive gradient direction. The validations of COMS TFTD is performed with Pilot Reports (PIREPs) filtered out Convective Induced Turbulence (CIT) from Dec 2013 to Nov 2014 over the South Korea. The score test shows 0.49 PODy (Probability of Detection 'Yes') and 0.64 PODn (Probability of Detection 'No'). Low POD results from various kinds of CAT reported from PIREPs and the characteristics of high sensitivity in edge detection algorithm.