• Title/Summary/Keyword: High Strength steel

Search Result 2,966, Processing Time 0.029 seconds

방전 플라즈마 소결 공법을 이용한 FSW-Tool 용 $WC-5Mo_2C-5Co$ 소결체 제조와 기계적 특성 평가

  • Yun, Hui-Jun;Park, Hyeon-Guk;Lee, Seung-Min;Bang, Han-Seo;Bang, Hui-Seon;O, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.40.2-40.2
    • /
    • 2011
  • 초경합금은 경도가 높은 재료를 말하며 일반적으로는 탄화텅스텐(WC)계 재료를 말한다. 국내 현재 초경합금 동향은 반도체 산업, 내마모성 공구, 절삭공구, 금형 등 많은 분야에 사용되어지고 있다. 또한 최근 들어 FSW (Friction Stir Welding, FSW)기술이 발전함에 따라 접합기술개발이 다양화되면서 FSW Tool의 고성능의 초경 재료가 요구되어지며 장수명의 Tool개발이 되어야 한다. 국내에서는 초경 합금 재료로 사용되어지고 있는 텅스텐 카바이드(WC)와 코발트(Co)를 이용하여 많은 연구가 진행되었다. 본 실험에서는 텅스텐 카바이드와 코발트 및 몰르브덴 카바이드를 혼합하여 소결체를 제조하였다. 실험에 사용된 텅스텐 카바이드는 높은 경도를 가지고 강한 취성을 나타내며, 소결에 어려운 단점이 있다. 이러한 단점을 코발트와 몰리브덴 카바이드를 첨가하여 소결온도를 낮춰주는 역할과 액상 소결시 텅스텐카바이드 입자사이에 침투하여 액상소결에 의한 치밀화가 가능하게 해주며 인성이 향상되어 고인성 재료를 만들 수 있었다. 본 실험에서는 합성과 치밀화가 동시에 진행되는 SPS (Spark Plasma Sintering:SPS) 장비를 이용하여 실험을 진행하였다. 이 방법은 방전플라즈마 소결 공법으로, 기존의 연소법과 열간 가압기술(Hot-press, HIP)을 결합한 방식으로 단 시간, 단일공정으로 치밀한 소결체를 얻을 수 있는 장점이 있다. 본 연구에서는 $WC-5Mo_2C$-5wt%Co 소결체 제조를 위해 원소 분말을 Horizontal ball milling 혼합하였다. 균일하게 혼합된 분말을 흑연다이에 충진하여 펄스전류와 기계적 압력을 동시에 가하여 $WC-5Mo_2C-5Co$ 복합재료를 제조하고 소결체의 밀도, 순도, 상변태, 미세조직 등을 분석 및 평가하였다. SPS공정 조건은 고진공하에서 $1,200^{\circ}C$-60MPa, 펄스비 12:1 조건으로 수행하였으며, 얻어진 $WC-5Mo_2C-5Co$ 소결체의 상대 밀도는 98%이상 이였다. 또한, 결정립 크기는 약 400 nm였으며, 경도는 $2,453kg/mm^2$를 나타내었다.

  • PDF

Acoustic Emission Testing in Cylindrical-Type Storage Tank (원통형 저장탱크의 음향방출시험)

  • Kwon Jeong Rock;Lyu Geun Jun;Lee Tae Hee;Kim Jee Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.9-15
    • /
    • 2000
  • In order to investigate the structural defects of a cylindrical-type toluene storage tank, we carried out the acoustic emissions. The storage tank was manufactured with high strength steel in 1978 and its's first and second courses from bottom were entirely repaired, recently. Acoustic emissions were monitored with real time according to load sequences in the $75{\~}84\%$ level range of maximum allowable load. Our results show a non-genuine acoustic emissions as well as a genuine characteristics. The pseudo emissions considered as valve noises were transiently occurred on shut-off processes of inlet valve regardless of water loading. The acoustic emission events occurred during water filling phase were estimated due to defects, and in the $75{\~}84\%$ test load level no evidences of defect growth were observed. Those defects were ascertained as weld cracks and porosities through the post radiography testing conducted near active sensors.

  • PDF

The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model (탄소성 모델에 의한 포물선 아치의 극한 내하력 평가)

  • 조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

Analysis on the dielectric characteristics of a composite insulation system composed of LN2 and GN2

  • Kim, Junil;Lee, Onyou;Mo, Young Kyu;Bang, Seungmin;Kang, Jong O;Lee, Hongseok;Nam, Seokho;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.33-36
    • /
    • 2015
  • A liquid nitrogen ($LN_2$) is usually used to be a coolant and insulant for a HTS coil system. HTS wires for a superconducting apparatus may be surrounded by gaseous nitrogen ($GN_2$) due to film boiling generated by a quench or voids occurred by electrical breakdown. The increased maximum electric field intensity at $GN_2$ may result in the degradation of dielectric strength of a HTS coil system. In this paper, a study on the dielectric characteristics of a composite insulation system composed of $LN_2$ and $GN_2$ is performed. A sphere-to-plane electrode system made with stainless steel is used to perform the experiments under AC and lightning impulse voltage condition. A sphere electrode is surrounded by $GN_2$ and a plane electrode is immersed into $LN_2$ to conduct dielectric experiments with a composite insulation system. The dielectric experiments are performed according to the level of $LN_2$ from the plane electrode to a sphere electrode. It is found that the dielectric characteristics of a composite insulation system are dependent on the level of $LN_2$ and the field utilization factor of an electrode system.

Membrane Structural Design and Construction by Using Glued Laminated Timber (집성재를 이용한 막구조물의 시공 및 설계)

  • Hwang, Bu-Jin;Ko, Kwang-Woong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.49-52
    • /
    • 2008
  • Structural Wood is developed by purpose to make efficient use of wood resources. The biggest advantage of structural wood is stable as strength is high than wood product that is used by structure in existing. Order manufacture according to design details is available. It Is used to main structure elements to large spatial structure. Structure wood kind utilizes Glulam, prefabricated wood I-joists and laminated veneer lumber(LVL) and so on. Structural Design and construction of Open-air Stage Roof Structure is described in the presented paper. Architectural roof materials is used to PVF/PFLT membrane. Column and diagonal members is used to steel members(SS400), and Cantilever beam is used to Glulam assembled with different Grade laminations(10S-28B).

  • PDF

Mode II Fracture Toughness of Hybrid FRCs

  • Abou El-Mal, H.S.S.;Sherbini, A.S.;Sallam, H.E.M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.475-486
    • /
    • 2015
  • Mode II fracture toughness ($K_{IIc}$) of fiber reinforced concrete (FRC) has been widely investigated under various patterns of test specimen geometries. Most of these studies were focused on single type fiber reinforced concrete. There is a lack in such studies for hybrid fiber reinforced concrete. In the current study, an experimental investigation of evaluating mode II fracture toughness ($K_{IIc}$) of hybrid fiber embedded in high strength concrete matrix has been reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction ($V_f$) of 1.5 %. The concrete matrix properties were kept the same for all hybrid FRC patterns. In an attempt to estimate a fairly accepted value of fracture toughness $K_{IIc}$, four testing geometries and loading types are employed in this investigation. Three different ratios of notch depth to specimen width (a/w) 0.3, 0.4, and 0.5 were implemented in this study. Mode II fracture toughness of concrete $K_{IIc}$ was found to decrease with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness $K_{IIc}$ was sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness ($K_{IIc}$). The four point shear test set up reflected the lowest values of mode II fracture toughness $K_{IIc}$ of concrete. The non damage defect concept proved that, double edge notch prism test setup is the most reliable test to measure pure mode II of concrete.

Evaluate the Concrete mix by Type Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Cyclic Wet and Dry Condition (인공해수 건습반복조건에 따른 콘크리트배합별 부식촉진시험법과 염화물 침투해석평가)

  • Park, Sang-Soon;Kim, Min-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.211-218
    • /
    • 2013
  • Cyclic wet and dry conditions in the marine environment structures corrosion is known to be the fastest rising. For that reason, accelerated corrosion test methods for the reproduction of tidal environment has been actively conducted. However, many studies have estimated threshold value for steel corrosion or concentrated in chloride penetration analysis. In this study, cyclic wet and dry conditions to reproduce the structure of the environment in accelerated corrosion and chloride penetration test analysis was performed. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. Accelerated corrosion test results for each formulation was different corrosion periods, the order OPC> FA> BS> High-strength concrete. FEM durability interpretation program DuCOM was conducted under the same conditions as in accelerated corrosion test. The experimental RCPT tests demonstrated the validity of the result.

A Study on the Optimal Design of Reinforced Concrete Slab-Beam-Column Structures by Direct Method (직접설계법(直接設計法)에 의한 철근(鐵筋)콘크리트 2방향(方向) 슬래브형(型) 구조체(構造體)의 최적설계(最適設計))

  • Kim, Yong Hee;Lyu, Hong Leal;Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1985
  • This study is conserned for the optimum design of reinforced concrete slab-beam-column structures with multi-storys and multi-bays by Direct Method. Flexural and shear strength, sectional size, and steel ratio etc., were considered as the design-constraints and the cost function was taken as to objective function. They became high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm was developed in this study and the algorithm was applied to the optimization of reinforced concrete structure system of 5 storys. The result converged to a optimal solution with 3 to 5 iterations, and proved that economical design could be possible when compared with conventional designs.

  • PDF

Development of Preheat-free 800 MPa GMA Welding Consumable (800MPa급 무예열 GMA 용접재료 개발)

  • Kim, Hee-Jin;Seo, J.S.;Park, H.K.;Park, C.K.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.39-39
    • /
    • 2009
  • 고강도강의 용접성은 저온균열 저항성으로 대변되는데, TMCP강과 HSLA강 등이 개발되면서 고강도강의 저온균열저항성이 크게 향상되어 무예열 용접성이 확보되었다. 그러나 용접재료 측면에서는 그에 상응하는 재료의 개발이 지연되어 용착금속부에서의 저온균열이 심각한 문제로 대두되고 있는 실정이다. 이러한 문제는 800 MPa급인 HY-100강재를 HSLA-100강으로 대체하는 과정에서 현실적인 문제로 제기 되었다. 즉 HSLA강은 용접 예열이 필요치 않았으나 기존의 용접재료, 즉 HY-100 강재에 사용하던 용접재료를 사용하게 되면 용착금속부에서 저온균열이 발생하여 용접예열을 생략할 수 없다는 판단에 이르게 되었던 것이다. 이에 본 연구의 목적은 HSLA-100강을 무예열 용접할 수 있는 GMA 용접와이어 개발하는 것이며, 구체적인 개발 목표는 무예열 용접조건에서 800 MPa 이상의 인장강도를 가지며 $-50^{\circ}C$에서의 충격인성이 50 J 이상인 GMA 용접와이어 개발하는 것이다. 이러한 용접재료를 합금설계함에 있어 무예열 용접성을 확보하기 위하여 용접재료의 탄소함량을 0.01% 수준으로 하고, 용착금속의 인장강도와 저온 충격치에 미치는 Mn과 Mo 함량의 영향을 검토하고 각각의 조성을 실험계획법으로 확정하였다. 그리고 확산성수소량에 따른 저온균열 발생 여부를 확인하여 무예열용접성을 확보하기 위해서는 확산성수소량이 3ml/100g 이하가 되어야 한다는 사실을 실험적으로 확인하였다. 그리고 이를 달성하기 위해서는 원자재인 와이어로드의 표면 품질이 중요하다는 사실도 확인할 수 있었다. 다음으로는 실험계획법에 의거하여 선정된 합금조성의 신뢰성을 검증하기 위하여 800kg 중량의 시제품을 생산하였으며, 생산된 시제품에 대해서는 실험계획법에서 사용한 Ar+5%CO2외에도 Ar+20%CO2를 적용하여 보호가스의 영향을 검토하였다. 검토 과정에서 Ar+20%CO2용으로 사용하기 위해서는 용접재료의 Si 및 Mn 함량이 상향조정되어야 함을 확인할 수 있었다. 그리고 탄소함량을 0.05% 수준으로 증가시키면 Mo 함량을 크게 저하시킬 수 있음도 확인할 수 있었다. 이러한 과정을 거쳐 개발된 GMA 용접재료는 무예열 용접조건에서 저온균열이 발생하지 않았으며, 인장강도는 830 MPa이었으며 $-50^{\circ}C$에서의 충격치는 90 J 이상이었다.

  • PDF