• Title/Summary/Keyword: High Strength steel

Search Result 2,966, Processing Time 0.031 seconds

Flexural Design and Experiments on Reinforced Concrete Filled PHC Pile (철근 콘크리트 충전 PHC말뚝의 휨 설계 및 성능 평가)

  • Kim, Jeong-Hoi;Jung, Hae-Kwang;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • The objective of this study is theoretical and empirical evaluation of the flexural performance of concrete filled pretensioned spun high strength concrete pile with ring type composite shear connectors (CFP pile). The specimens are comprised of standard CFP pile, PHC pile+composite shear connector+filed concrete (CFP-N-N), standard CFP pile with $1^{st}$ reinforcements (H13-8ea), and standard CFP pile with $1^{st}$ and $2^{nd}$ reinforcements(H19-8ea). Flexural performance evaluation results showed that the ductility is improved with increased steel ratio, which leads to the increased maximum load by 46.4% (with $1^{st}$ reinforcement) and 103.9% (with $1^{st}$ and $2^{nd}$ reinforcements) compared to standard CFP ( CFP-N-N). Comparing with the predicted ultimate limit state values of the CFP pile design method and the experimental results, the design method presented in this study is reasonable since safety factor of 1.23 and 1.40 times for each reinforcement step are secured.

Ballistic impact response of Kevlar Composites with filled epoxy matrix

  • Pekbey, Yeliz;Aslantas, Kubilay;Yumak, Nihal
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.191-200
    • /
    • 2017
  • Impact resistance and weight are important features for ballistic materials. Kevlar fibres are the most widely reinforcement for military and civil systems due to its excellent impact resistance and high strength-to-weight ratio. Kevlar fibres or spectra fiber composites are used for designing personal body armour to avoid perforation. In this study, the ballistic impact behaviour of Kevlar/filled epoxy matrix is investigated. Three different fillers, nanoclay, nanocalcite and nanocarbon, were used in order to increase the ballistic impact performance of Kevlar-epoxy composite at lower weight. The filler, nanoclay and nanocalcite, content employed was 1 wt.% and 2 of the epoxy resin-hardener mixture while the nanocarbon were dispersed into the epoxy system in a 0.5%, 1% and 2% ratio in weight relating to the epoxy matrix. Specimens were produced by a hand lay-up process. The results obtained from ballistic impact experiments were discussed in terms of damage and perforation. The experimental tests revealed a number of damage mechanisms for composite laminated plates. In the ballistic impact test, it was observed whether the target was perforated completely penetrated at the back or not. The presence of small amounts of nanoclay and nanocalcite dispersed into the epoxy system improved the impact properties of the Kevlar/epoxy composites. The laminates manufactured with epoxy resin filled by 1 wt.% of nanoclay and 2 wt% nanocalcite showed the best performance in terms of ballistic performance. The addition of nanocarbon reduced ballistic performance of Kevlar-epoxy composites when compared the results obtained for laminates with 0% nanoparticles concentration.

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

Development of Evaluation System for Fatigue Strength on the Connection Between Longitudinals and Transverse Web (유조선 종통보강재와 횡늑골 연결부의 피로강도 평가용 자동화 시스템 개발)

  • Hong, Ki-Sup;Kim, Sung-Chan;Ahn, Jae-Wook;Kim, Seong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.510-519
    • /
    • 2009
  • Ship structure is composed of the welded mixture members which are plate and stiffeners. Ship structure is also influenced by variable loadings such as wave and inertia load. There have been several fatigue damage problems on the connection between longitudinal and transverse web due to wide usage of high tensile steel and adoption of wide web space to improve shipbuilding productivity. It is impossible to estimate the fatigue lives for all connection details through refined fatigue analysis. It is necessary to use the simplified approach for the fatigue life estimation of the connection details. PLUS analysis, which is suggested by the classification society, is one of the simplified approaches and is widely adopted to get fatigue lives for the connection details along whole cargo hold area. However, ship building yards still have difficulties to get fatigue lives due to large amount of calculation and time even if this approach reduce the time and amount of calculation. This paper treats the computing system developed to reduce efforts of estimating the fatigue lives. The influence factors of mean shear stress and local dynamic pressure are easily calculated and fatigue lives for all hot spots can be estimated automatically by the developed computing system. It is possible to reduce computing time and efforts to get the fatigue lives for the connection details between longitudinals and transverse webs along the ship. This system was applied to get fatigue lives on the connection details of a VLCC and verified the availability.

Analysis of Produced By-products Due to Oil/Paper Degradation on Power Transformers (전력용 변압기의 열화에 의해 생성된 부산물의 분석)

  • Kim, Jae-Hoon;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1561-1565
    • /
    • 2007
  • According to thermal degradation on power transformers, it is known that electrical, mechanical and chemical characteristics for power transformer's oil-paper are changed. In the chemical property, especially, when the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. Also the paper breakdown is accompanied by an increase in the content of various furanic compounds within the dielectric liquid. It is known that furanic components in transformer oil come only from the decomposition of insulating paper rather than from the oil itself. Therefore the analysis of furanic degradation products provides a complementary technique to dissolved gas analysis for monitoring transformers when we evaluate the aging of insulating paper by the total concentration of carbon monoxide and carbon dioxide dissolved in oil only. Recently, the analysis of furanic compounds by high performance liquid chromatography(HPLC) using IEC 61198 method for estimating degradation of paper insulation in power transformers has been used more conveniently for assessment of oil-paper. It is know that the main products which is produced by aging are 2-furfuryl alcohol, 2-furaldehyde(furfural), 2-furoic acid, 2-acetylfuran, 5-methyl-2-furaldehyde, and 5-hydroxymethyl-2-furaldehyde. For investigating the accelerated aging process of oil-paper samples we manufactured accelerating aging equipment and we estimated variation of insulations at $140^{\circ}C$ temp. during 500 hours. Typical transformer proportions of copper, silicon steel and iron have been added to oil-paper insulation during the aging process. The oil-paper insulation samples have been measured at intervals of 100 hours. Finally we have analyzed that 2-furoic acid and 2-acetylfuran products of furanic compounds were detected by HPLC, and their concentrations were increased with accelerated aging time.

Design of Vam Cong Cable Stayed Bridge in Vietnam (베트남 밤콩 사장교의 설계)

  • Lee, Yong-Jin;Kang, Jeong-Woon;Bae, Sang-Woon;Yun, Yeon-Suk;Lho, Byeong-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.120-127
    • /
    • 2013
  • Vam Cong Cable Stayed Bridge which has 450m main span length is one of the Central Mekong Delta Region Connectivity Project and is located in Cuu Long Delta Region. It has steel-concrete composite girder with 4 lane and the type of cable is multi strand cable. The improved H-shape pylon and cast-in-place bored piles were applied. High strength concrete is applied for pylon, precast concrete slab and Cast-in-Situ concrete pile to ensure the structural safety. The present paper describe the design specifications and main features of Vam Cong Cable Stayed Bridge design.

Numerical Investigation of Deformation of Thin-walled Tube Under Detonation of Combustible Gas Mixture (가연성 연소 가스의 데토네이션에 의한 얇은 관 변형 모델링)

  • Gwak, Mincheol;Lee, Younghun;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • We present the results of a multi-material numerical investigation of the propagation of a combustible gas mixture detonation in narrow metal tubes. We use an experimentally tuned one step Arrhenius chemical reaction and ideal gas equation of state (EOS) to describe stoichiometric $H_2-O_2$ and $C_2H_4-O_2$ detonations. The purely plastic deformations of copper and steel tubes are modeled using the Mie-Gruneisen EOS and Johnson-Cook strength model. To precisely track the interface motion between the detonating gas and the deforming wall, we use the hybrid particle level-sets within the ghost fluid framework. The calculated results are validated against the experimental data because the results explain the process of the generation and subsequent interaction of the expansion wave with the high-strain-rate deformation of the walls.

Variation of Cone Crack Shape in Ceramic Materials According to Spherical Impact Velocity (입자충격속도에 따른 세라믹재료의 콘크랙 형상 변화)

  • O, Sang-Yeop;Sin, Hyeong-Seop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.380-386
    • /
    • 2002
  • Damage behaviors induced in silicon carbide by an impact of particle having different material and size were investigated. Especially, the influence of the impact velocity of particle on the cone crack shape developed was mainly discussed. The damage induced by spherical impact was different depending on the material and size of particles. Ring cracks on the surface of specimen were multiplied by increasing the impact velocity of particle. The steel particle impact produced larger ring cracks than that of SiC particle. In the case of high velocity impact of SiC particle, radial cracks were produced due to the inelastic deformation at the impact site. In the case of the larger particle impact, the damage morphology developed was similar to the case of smaller particle one, but a percussion cone was farmed from the back surface of specimen when the impact velocity exceeded a critical value. The zenithal angle of cone cracks developed into SiC material decreased monotonically with increasing of the particle impact velocity. The size and material of particle influenced more or less on the extent of cone crack shape. An empirical equation, $\theta$= $\theta$$\sub$st/, v$\sub$p/(90-$\theta$$\sub$st/)/500 R$\^$0.3/($\rho$$_1$/$\rho$$_2$)$\^$$\frac{1}{2}$/, was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of cone crack. It is expected that the empirical equation will be helpful to the computational simulation of residual strength in ceramic components damaged by the particle impact.

A Study on the Stress Corrosion Cracking Propagation Behaviors of high Strength Steel by Means of Emission Test (음향방출시험에 의한 고장력강의 응력부식 균열전파 거동에 관한 연구)

  • Yu, Hyo-Seon;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.361-371
    • /
    • 1993
  • Among the various test methods for stress corrusiun cracking(SCC) susceptibility evaluatiun, the slow stram rate test(SSHT) method is a rapid and effective nwthod to evaluate the SCC susceptibility of metal in relatively short time. But it is very difficult to analyze the microfracture behaviors in SCC process by using the test(SSRT) method only. Up to now, it has been well known that the acoustic emission(AE) test is the effective technique to monitor the microcrack initiation and propagation in material fracture pmcess. Therefore. in this paper, we analyzed the correlation between the see process and the characteristics of AE signal by using the SSHT and the AE test. According to the test results. the AE signals produced from the material microfracture were clearly depended on the test environment. The AE signal characteristics generated during see process in synthetic sea water were comparatively greater than those. in air. In addition, the SCC behaviors could be definitely evaluated by the amplitude parameter of AE signals.

  • PDF