• Title/Summary/Keyword: High Strength Steel Sheet

Search Result 233, Processing Time 0.026 seconds

An Analysis of Small Punch Test Conducted with the High Strength Dual Phase Sheet Steels Charged with Hydrogen (수소주입된 고강도 DP 박강판의 소형펀치시험결과 분석)

  • Choi, Young-Cheul;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.229-233
    • /
    • 2013
  • The small punch(SP) tests that can be applied to high strength sheet steel in automobile were carried out to evaluate the behavior of hydrogen embrittlement of DP sheet steels. In order to charge hydrogen at DP sheet steels, DP sheet steels were treated by the electrochemical hydrogen charging method under the charging conditions of current densities of 100, 150 and 200 $mA/cm^2$ for charging times of 5, 10, 25 and 50 hrs. Respectively, After hydrogen charging with experimental conditions, SP tests were performed. From the SP results, the correlations between the variation of bulb diameters and bulb heights with the hydrogen charging conditions were analysed. It was shown that the variation of bulb diameters were not significant with the hydrogen embrittlement due to the amounts of hydrogen charging. On the other hand, the bulb heights were observed to decrease with increasing hydrogen contents. It was thought that these results of the variation of bulb shapes after SP tests would be estimated as the index of evaluation of hydrogen embrittlement.

Characteristics of Zn-Ni Electrodeposition of 60 kgf/$\textrm{mm}^2$ Grade Transformation Induced Plastic Steel Sheets for Automotive Body (60 kgf/$\textrm{mm}^2$급 자동차용 변태유기소성강화강 Zn-Ni 전기도금 특성 연구)

  • Kim D. H.;Kim B. I.;Jeon Y. T.;Jeong Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.263-272
    • /
    • 2004
  • High strength steels such as transformation induced plastic steel, dual phase and solid solution Hardening have been developed and continuously improved due to the intensified needs in the automotive industry. But silicon and manganese in transformation induced plastic steels were known to exhibit harmful effects on galvannealing reaction by oxide film formed during heat treatment. Therefore, in this work, the applicability of Zn-Ni electrodeposition instead of hot dip galvannealed coating to transformation induced plastic steels was evaluated and optimum electroplating condition was investigated. Based on these investigations optimized electroplating conditions were proposed and Zn-Ni electrogalvanized steel sheet was produced by EGL (electrogalvanized line). Its perfomance properties for automotive steel was evaluated.

The effect of welding heat input and heat-treatment on the strength of the electron beam welded $175Kg/mm^2$ maraging steel sheet (전자비임용접한 $175Kg/mm^2$급 박판 Maraging강의 이음강도에 미치는 용접입열 및 열처리의 영향)

  • 윤한상;정병호;배차헌
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.21-29
    • /
    • 1986
  • The influence of welding heat input variation(600-900J/cm) and heat-treatment condition after welding on tensile strength of butt welded joint in $175Kg/mm^2$ strength level Maraging steel(Co-free and Co-containing) sheets was investigated on the basis of hardness distribution, microstructure of weld metal and fracture surface. The obtained main results are as follows; 1. The strength of weldment (UTS, NTS), joint efficiency showed a little decreasing tendency with the increase in welding heat input, and the elongation showed a little increasing tendency with the increase in the width of weld metal. It was considered because of the plastic constraint of the high strength base metal. 2. The strength of weldment was better in the solution treatment and aging than the aging only after welding due to the disappearance of almost denverite in weld metal. 3. The hardness distribution in weldment after welding and heat-treatment was almost similar to both Co containing and Co free Maraging steel with change in welding heat input. 4. The fracture was occurred at weld metal, and the fracture surface showed a relatively shallow dimples in both Co containing and Co free Maraging steel.

  • PDF

Effects of Projection Height and Post Treatment on the Resistance Projection Weldability of Zn Coated Sheet Steels (아연도금 강재의 용접성에 미치는 돌기 성형 및 피복조건의 영향)

  • 김기철;이목영
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.83-88
    • /
    • 1999
  • In this paper resistance projection weldability of Zn coated steels with post treatment has been discussed. Projection welding was performed by a condenser discharge type power source which was equipped with welding parameter monitoring system. Mechanical test results indicated that the effect of post coatings on the projection front changed showing very small very small spattering at the weld strength was negligible. However, contamination rate of the block electrode varied depending on the post treatment coatings. Test results also showed that projection height before welding should be kept to be 80-100% of the specimen thickness as far as the surface quality was taken into consideration. Based on the high speed photography, discharge condition at the beginning stage of the welding process. It was considered that the spattering reduced the weld strength slightly at the optimum heat input range.

  • PDF

Bake hardenability of batch annealed steel sheets with prestrain (일괄 풀림처리된 강판의 예비 변형정도에 따른 소열경화 특성)

  • Huh, Hoon;Whang, P. S.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.40-48
    • /
    • 1990
  • Bake hardenability of batch annealed steel sheets is investigated in connection with the amount of tensile deformation and the bake hardening condition. This study associates with the method for producing bake hardening materials by means of batch annealing process and for measuring bake hardenability which is not yet fully established. The experimental result demonstrates the relationship between strain distribution and bake hardening behavior in various bake hardening conditions, which provides an essential information for automobile design and related sheet metal forming in a press shop. The result also shows the bake hardenability of the tested material increases as the baking temperature is increased from 150.deg. C. The result assures the bake hardening materials can guarantee reasonably high strength as well as good uniformity in yield strength for the automobile body by sheet metal forming process.

  • PDF

A Study on the Forming Process of Stair Type Side Sill for Automobile using DP780 (DP780이 적용된 자동차용 계단형 사이드실의 성형공정 연구)

  • Suh, C.H.;Shin, H.D.;Jung, Y.C.;Park, C.D.;Lim, Y.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.301-306
    • /
    • 2009
  • High strength steels are widely used for lightweight automobile parts and the control of springback is very important in sheet metal forming. The object of this study is to develop the forming process for stair type side sill made of high strength steel, DP780. Stair type side sill with local formed area and geometry change area can improve stiffness and design freedom but there are a few studies for forming process. The forming technology considered in this paper is form type process, which have many advantages for farming of high strength steel compared with draw type process. Finite element analysis is carried out to predict formability and springback. It is shown that angle calibration of die is essential for reducing springback, and local forming involving bead is effective to control springback also. The effectiveness of local forming and angle calibration is verified by experimental.

  • PDF

A Study on the Forming Process of Stair Type Side Sill for Automobile using DP780 (DP780이 적용된 자동차용 계단형 사이드실의 성형공정 연구)

  • Suh, C.H.;Shin, H.D.;Jung, Y.C.;Park, C.D.;Lim, Y.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.601-606
    • /
    • 2009
  • High strength steels are widely used for lightweight automobile parts and the control of springback is very important in sheet metal forming. The object of this study is to develop the forming process for stair type side sill made of high strength steel, DP780. Stair type side sill with local formed area and geometry change area can improve stiffness and design freedom but there are few studies for forming process. The forming technology considered in this paper is form type process, which has many advantages for forming of high strength steel compared with draw type process. Finite element analysis is carried out to predict formability and springback. It is shown that angle calibration of die is essential for reducing springback, and local forming involving bead is effective to control springback also. The effectiveness of local forming and angle calibration is verified by experimental.

Springback Control in the Forming Processes for High-Strength Steel Sheets (고강도 강판 성형 공정의 스프링백 제어)

  • Yang WooYul;Lee SeungYeol;Keum YoungTag;Hwang JinYoung;Yoon ChiSang;Shin ChirlSoo;Cho WonSuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.35-40
    • /
    • 2003
  • In order to develope springback control technology for high-strength steel sheets, some studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to know the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type, high strength sheet panels.

  • PDF

Analysis of Springback and Die Material Suitability in the UHSS Sheet Forming Process (초고강도 강판 성형 시의 스프링백 해석 및 금형 소재 적합성 검토)

  • Oh, I.S.;Yun, D.Y.;Cho, J.H.;Lee, M.G.;Kim, H.Y.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.203-210
    • /
    • 2020
  • In this study, formability and springback behavior of 1.5 GPa grade ultra-high strength steel (UHSS) sheet were predicted through the finite element simulation, and structural stability of the forming dies was verified by the coupled forming-structural analysis. Uniaxial tension and uniaxial tension-compression tests were performed to obtain experimental data for modeling the springback properties of the sheet material. The springback values predicted by simulation were compared with those from actual measurements. The results calculated from the kinematic hardening model were found to be much more accurate than those from the isotropic hardening model. Deformation of the forming die and springback of the product were calculated by the coupled forming-structural analysis. The higher the strength of the die material, the smaller the surface displacement of the die and the springback of the product. The internal stresses of the dies made of three materials, FC300, FCD550 and STD11 were compared with the yield stress of each material. The results provided a basis for determining the most suitable material for each part of the die set. As a result, simulation techniques have been established for predicting formability and springback in the UHSS sheet forming process.

A Study on the Relationship between Tensile and Low Cycle Fatigue Properties of High Strength Material (고강도 소재의 인장과 저주기피로 물성치의 연관성에 관한 연구)

  • Park, M.K.;Suh, C.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.110-115
    • /
    • 2014
  • Low cycle fatigue characteristics are very important in the development of automobile suspension parts. Fatigue properties using the strain life approach are usually obtained from low cycle fatigue tests. However, low cycle fatigue testing requires a lot of time and cost. In the current study, an attempt to estimate low cycle fatigue properties of high strength steel sheet from tensile test and tensile simulations is performed. In addition, low cycle fatigue testing was conducted to compare the fatigue properties obtained from tensile testing and simulations. In conclusion, the results effectively predict the low cycle fatigue properties. However, some deviations still exist.