• 제목/요약/키워드: High Strength Material

검색결과 2,926건 처리시간 0.037초

고장력 열연강판의 드릴 가공시 공구마멸에 관한 연구 (A Study on Tool Wear in Drilling of Hot-rolled High Strength Steel)

  • 신형곤;김성일;김태영
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.10-17
    • /
    • 2001
  • Drilling is one of the most important operations performed in the machining industry. And the material of the workpiece has a profound effect on the tool life, the surface finish produced and the overall economy of the process. Hot-rolled high strength steels have been used for automobile structural material, owing to high hardness and machinability of the material. However, in the drilling of hot-rolled high strength steels, the current knowledge of tool wear and machinability are insuf-ficient. There, it is desirable to monitor drill wear status and hole quality changes during the hole drilling process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include the drilling thrust, torque and drill wear data obtained from drilling experiments con-ducted on the workpiece. Also drill were is measured by acoustic emission system and computer vision system.

  • PDF

고강도 철근콘크리트 보의 전단거동에 관한 실험적 연구 (An Experimental Study on Shear Behaviour of Reinforced High Strength Concrete Beams)

  • 곽계환;고갑수;곽경헌
    • 한국농공학회지
    • /
    • 제38권3호
    • /
    • pp.58-69
    • /
    • 1996
  • In recent years, the research and development about the new material proceeds rapidly and actively. In building industry, high strength concrete is of interest as a new material. Since the building structure becomes bigger, higher and more specialized, the demand of material and member with high strength expands greatly. Therefore in this experiment, cement complex with high strength was made using the condensed silica fume, a basic experiment was performed on strength property, and optimum-mixture-state was determined for manufacturing a high-strength concrete. Shear behaviour and fracture property of concrete beams with high strength were evaluated. On the whole, in spite of many researches, it is one of the difficult problems that shear fracture of concrete beams has not yet been clearly understood theoretically, and now the shear-design-standard forms in many countries are a formula based on experiment. In this study, the variable of shear behavior experiment was shear-reinforcement-ratio. By analyzing test results and comparing with computation value by ACI code, the basic data was offered on shear design of reinforced concrete beams with high strength. The effect of epoxy repair was also investigated for the beams with cracks due to flexural and shear loading.

  • PDF

장경간용 고강도 가공송전선 개발 (Development of a High Strength Conductor for Long Span)

  • 김병걸;김상수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.521-522
    • /
    • 2007
  • A new high strength conductor was designed for long span transmission line with a high nitrogen steel having high tensile strength and non-magnetic properties and high strength AI alloy. The tensile strength of conductor is very important to reduce the sag. The height of electric tower depend on the sag also. More than 36% less of sag was achieved by using ACHR(Aluminum conductor stranded high-nitrogen steel reinforced) instead of conventional ACSR.

  • PDF

내화 마감재 종류에 따른 고성능 RC기둥의 폭열방지 및 온도이력 특성 (Properties of Temperature History and Spatting Resistance of High Performance RC Column with Finishing Material)

  • 허영선;김기훈;이진우;이보형;이재삼;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.37-40
    • /
    • 2005
  • High Performance Concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However. spatting is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper focuses on the analysis of the temperature history and residual compressive strength with finishing material, in order to protect HPC from sudden-high-temperature, which is one of the main reason spatting occurs. Test results show that spalling occurs in all specimens. The most serious spalling took placed in HPC covering fire enduring spray-on material, whose covering thickness is 20mm but temperature history indicates that fire enduring spray effectively protected HPC from fire for more than 2hours. In addition, residual compressive strength ratio of HPC using fire enduring paint was more than $90\%$ of original strength, thus minimizing spatting and indicating significant fire resistance performance.

  • PDF

초고강도 콘크리트의 자기수축 및 물리적 특성에 관한 기초적 연구 (A Basic Study on Autogenous Shrinkage and physical property of the Ultra-High-Strength Concrete)

  • 박현;윤기현;조승호;김광기;김우재;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.57-60
    • /
    • 2009
  • In ultra-high-strength concrete, autogenous shrinkage is larger than dry shrinkage due to the consume of a large amount of cement and cementitous material, and this is a factor deteriorating the quality of structures. Thus, we need a new technology for minimizing the shrinkage strain for ultra-high-strength concrete. So, this paper have prepared super-high-strength concrete with specified mixing design strength of over 150MPa and have evaluated a method of reducing autogenous shrinkage by utilizing expander and shrinkage-reducing agent. According to the results of this study, with regard to the change in length by autogenous shrinkage, an expansion effect was observed until the age of seven days. The expansion effect was higher when the contents of the expander material were higher. In addition, ultra-high-strength concrete showed a shrinkage rate that slowed down with time, and the effect of the addition of expander material on compressive strength was insignificant. That is shown that required more database to be accumulated through experimental research for the shrinkage strain of members.

  • PDF

제지 애쉬를 사용한 고강도 혼화재 개발에 관한 연구 (Study on the Development of High Strength Admixture using Paper Sludge Ash)

  • 이재환;서형남;김창률;민경소
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.87-92
    • /
    • 1998
  • The purpose of this study is to use paper sludge ash as a material in manufacturing high strength admixture. The reactivity of paper sludge ash as iteself is low for the crystallized non-reactive $SiO_2$, but when the $SiO_2$ was removed, the phase component is mainly composed of glass phase which could react with cement hydrates. In this study, we manufactured high strength admixture using separated paper sludge ash, and examined the strength of mortar, spun concrete with and without this high strength admixture in steam curing. The strength of spun concrete with high strength admixture including paper sludge ash was more higher than that of spun concrete without admixture. As a result, it was found that paper sludge ash could be used to a pozzolanic material in manufacturing high strength admixture.

  • PDF

고강도 콘크리트 구조부재의 폭렬 특성에 관한 실험적 연구 (An Experimental Study on the Explosive Spalling Properties of High Strength Concrete Structure Member)

  • 김흥열;전현규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.421-424
    • /
    • 2006
  • This study, in order for perceiving the mechanical attribute followed by the explosive spalling of high strength concrete material under high temperature and evaluating capacity of endurance of material, targets understanding capacity of endurance of material such as explosive spalling in high temperature, temperature by thickness of clothing, transformation extent, transformation speed and displacement, stocking the maximum load based on the Allowable Stress Design Method. As a result of experimenting the explosive spalling attribute of high strength concrete material, the one possibly causing serious damage is the 50 MPa concrete. In all aspects of 60 MPa concrete, explosive spalling happens. Especially, it is hazardous enough to reveal all the iron bar. All explosive spalling is intensively concentrated on the surface of concrete for the first $5{\sim}25$ minutes, which urges for the explosive spalling protection action. As a result of evaluating the structural safety by the transformation of high strength concrete, while beam assures the fire safety meeting regulation, 60 MPa shows the dramatic increase of transformation, which only counts 84% of safety. In a column, both the concrete exclusion and excessive explosive spalling are concentrated upper part of column, which brings about the dramatic transformation, so it only meets the 50% of safety regulation. Likewise, in 80, 100 MPa concrete which was never experimented considering the condition of domestic structural endurance stocking devices, the faster collapse is expected.

  • PDF

건축구조물에 적용하기위한 신개발 시멘트계 내화재료의 내화성능에 관한 연구 (Study of fire protection performance of newly developed cementitious fire protection material for application to architectural building)

  • 김장호;박해균;이명섭;원종필;임윤묵;이경민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.633-636
    • /
    • 2006
  • High-rise and large size buildings require high strength concrete and steel structure as a necessity. However, high strength concrete and steel structure are strong material but have a weakness to high temperature. Therefore, fire protection is a matter that must be considered very importantly in design for structure of high strength concrete and steel. Fire proof board that is existing method for fire proof has relatively low performance in fire protection emphasizes the need of new fire protection material due to the using of in numerable inflammables like plastics. The objective of this study is to understand the fire-resisting performance of newly developed fire protection material for building. This paper describes the results of fire tests using ISO curve that is fire protection regulation for buildings of the newly developed cementitious fire protection coating material applied concrete tunnel lining specimens.

  • PDF

유동화공법에 의해 제조한 고유동 콘크리트의 원가분석에 관한 기초적 연구 (A Fundamental Study on the Estimation of Construction Cost of High Fluidity Concrete Applying Flowing Concrete Method)

  • 한민철;손성운;오선교;김성수;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.99-102
    • /
    • 2002
  • This paper discusses the estimation of construction cost of high fluidity concrete using segregation reducing type superplasicizer with 350kgf/cm2 of design strength and 60$\pm$5cm of slump flow in order to verify the cost down effect of high fluidity concrete compared with that of plain concrete with 350kgf/cm2 of design strength and 18cm of slump and with 210kgf/cm2 of design strength and 15cm of slump. According to research, under same strength levels, although material cost of high fluidity concrete is somewhat higher than that of plain concrete due to segregation reducing type superplasticizer, labor cost and equipment cost of high fluidity concrete is cheaper than that of plain concrete. However, based on the strength differences, high fluidity concrete shows lower material cost, labor cost and equipment cost than that of plain concrete due to decreasing in size of member and re-bar caused by high strength development of concrete.

  • PDF

고온 강구조 압축재의 좌굴 강도에 관한 연구 (A Study on Buckling Strengths for Steel Compression Members at High Temperatures)

  • 최현식
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.73-81
    • /
    • 2019
  • The high-temperature properties of mild steels were studied by comparing the test results of Kwon and the yield strength, tangent modulus predicted by the design provisions of ASCE and Eurocode(EC3). The column strengths for steel members at high temperatures were determined by the elastic and inelastic buckling strengths according to elevated temperatures. The material properties at high temperatures should be used in the strength evaluations of high temperature members. The buckling strengths obtained from the AISC, EC3 and approximate formula proposed by Takagi et al. were compared with ones calculated by the material nonlinear analysis using the EC3 material model. The newly simplified formulas for yield stress, tangent modulus, proportional limit and buckling strength which were proposed through a comparative study of the material properties and buckling strengths. The buckling strengths of proposed formulas were approximately equivalent to ones obtained from the formulas of Takagi et al. within 4%. They were corresponded to the lower bound values among the buckling strengths calculated by the design formulas and inelastic buckling analysis.