• Title/Summary/Keyword: High Spindle Machining

Search Result 213, Processing Time 0.018 seconds

Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials (공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

A Study on the Vibration Analysis of Spindle Housing with High Strength Aluminum of 2NC Head in Five-axis Cutting Machine Training (5축 절삭가공기 교육 중 2NC 헤드의 고강도 알루미늄을 적용한 스핀들 하우징의 극한 조건의 진동해석에 관한 연구)

  • Lee, Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.119-125
    • /
    • 2022
  • Materials used for education are materials such as SM20C, Al6061, and acrylic. SM20C materials are carbon steel and are often used in certification tests and functional competitions, but are also widely used in industrial sites. The Al6061 material is said to be a material that has lower hardness and stronger flexibility than carbon steel, so it is a material that generates a lot of compositional selection of tools. If students are taught practical training using acrylic materials, vibration occurs due to excessive cutting in some parts and damage to the tool occurs. In this process, we examine to what extent the impact on the 2NC head, which is a five-axis equipment, can affect precision control. The weakest part of the five-axis equipment can be said to be the weakest part of the head that controls the AC axis. When the accuracy and cumulative tolerance of this part occur, the accuracy of all products decreases. Therefore, the core part of the 2NC head, the spindle housing, was carried out using an Al7075 T6 (Alcoa, USA) material. In the process of vibration and cutting applied to this material, the analysis was conducted to find out the value applied to the finite element analysis under extreme conditions. It is hoped that this analysis data will help students see and understand the structure of 5-axis machining rather than 5-axis cutting.

Analysis for the Cross Rail Design and the Zig-Zag Motional Error in Gantry Type Machine (Gantry Type 대형 공작기계의 Cross Rail 설계 및 좌우 이송 편차에 관한 해석)

  • Lee, Eung-Suk;Lee, Min-Ki;Park, Jong-Bum;Kim, Nam-Sung;Ham, Jun-Sung;Hong, Jong-Seung;Kim, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • Recently, the demands of the large scale machine tools gradually increase to machine the large parts, such as large scale crankshaft, yaw and pitch bearings for the wind power generator and the vehicle or aircraft components. But the high technology is necessary in order to develop the huge machine tools. Furthermore, the global market of it has been monopolized by a few companies. So, we need to develop the large scale machine tools and study its core technology to rush into the increasing market. In this study, we carried out the researches for the important core technology of a multi-tasking, machine tool; a large scale 5-axis machine tool of gantry type for multi-task machining. This study is focused on the design of large size gantry type multi-axis machine. In the case of large size of machine the cross rail deflection in the X-axis is significant. To reduce the deflection due to the eccentric spindle head, a special hollow type design in the cross rail with outside ram is adapted in this study. Also, the Zig-Zag motion in the Y-axis is inevitable with the gantry geometry, which is by the un-balancing, different motion at the left and the right columns moving. We tried to reduce the influence of Zig-Zag motion using FEM with different loading conditions at the left and the right side column.