• Title/Summary/Keyword: High Speed Spindle System

Search Result 189, Processing Time 0.038 seconds

Study on Spindle Motor's Power-Factor and Frictional Characteristics For Cutting Force Monitoring in a CNC Machine (CNC 공작기계의 절삭력 감지를 위한 주축모터의 역률 및 마찰특성에 관한 연구)

  • 홍성함;이병휘;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.141-146
    • /
    • 2002
  • Real-time monitoring and control of the cutting force is essential for unmanned cutting process. Although the cutting force can be measured directly using tool dynamometers, their implementation is not feasible in industry due to high cost. Alternative approach is the cutting force estimation based on spindle drive models, but it requires the knowledge of their characteristics with the spindle speed variation. This paper investigates the power-factor and frictional characteristics of three-phase induction motors and determines its characteristics below and above the base speed, respectively. In order to realize the proposed cutting force monitoring system, a stand-alone DSP board was utilized. Its monitoring and control performance is evaluated in a CNC lathe.

  • PDF

A Study on the Performance of Optical Fiber Displacement Sensor for Monitoring High Speed Spindle according to Properties of Optical Fiber (고속주축 모니터링용 광파이버 변위센서의 파이버 특성에 따른 센서 성능 연구)

  • 박찬규;신우철;배완성;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.385-389
    • /
    • 2003
  • To make high speed spindle system work properly, sensors with outstanding resolution and dynamic characteristics are essential. An optical fiber displacement sensor is based on simple principles. Electrical signal responds to the optical flux change due to the displacement change between a target and a sensor probe. In this paper, the performance of optical fiber displacement sensor has been investigated according to properties of optical fiber Firstly, optical loss has been measured before and after polishing optical fiber endface. Secondly, allowance of optical fiber bending has been tested. thirdly sensitivity and linear range of the sensor has been found out according to the shape of cross section of optical fiber.

  • PDF

A Study on the Thermal Specific of Operational Spindle System of Machine Tool by FEM (주축의 동적거동시 FEM을 이용한 열적 특성에 관한연구.)

  • 임영철;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.396-400
    • /
    • 2003
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design condidering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verifiedthe test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirmn approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective method in thermal-appropriate design..

  • PDF

A Study on the Thermal Distribution Analysis of Operational Spindle System of Machine Tool (공작기계 주축 거동시 온도분포 특성에 관한 연구)

  • 임영철;김종관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.980-984
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design condidering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirm approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective method in thermal-appropriate design.

  • PDF

A Study on the Thermal Specific of Operational Spindle System of Machine Tool (공작기계 주축부 운전시 열적 특성에 관한연구.)

  • 임영철;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.498-503
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design considering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirmn approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective mettled in thermal-appropriate design.

  • PDF

Thermal Characteristic Analysis of a High-Speed HMC with Linear Motor and Magnetic Bearing (리니어모터와 자기베어링을 채용한 초고속 HMC의 열특성 해석)

  • Kim, S. I.;Lee, W. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.11-15
    • /
    • 2002
  • This paper presents the thermal characteristic analysis of a high-speed HMC with spindle speed of 50,000rpm. The spindle is supported by two radial and axial magnetic bearings. and the built-in motor is located between the axial and rear radial magnetic bearings. The X-axis and Y-axis feeding systems are composed of linear motor and linear motion guides, and the Z-axis feeding system is composed of servo-motor, ballscrew and linear motion guide. The thermal analysis model of high-speed HMC is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on the temperature distribution and thermal deformation under the conditions related to the heat generation of built-in motor, magnetic bearings, linear motors, servo-motor, ballscrew, and so on.

  • PDF

Inertia Identification Algorithm for Spindle Motor of Machine Tool (고성능 절삭 추력을 위한 스핀들 전동기의 최대토크운전 분석)

  • Kwon, Wan-Sung;Kim, Young-Sik;Cao, Qinbo;Choi, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.37-39
    • /
    • 2007
  • This paper compared with field weakening operation methods for the spindle motor of machine tool in which high speed drive is required. The maximum torque field weakening algorithm ensures the full utilization of the output torque capability of the machine over 1/Wr method. From simulation, the validity of the Max_Te method is confirmed. It is verified that the Max-Te algorithm provided the improved torque capability over 1/Wr method. So, It is applicable to provide high performance control involving fast acceleration and precise speed control for the adjustable speed drive system of spindle.

  • PDF

오일제트윤활방식의 25,000rpm급 모터내장형 고속주축계의 진동특성에 관한 연구

  • 이용희;김석일;하재용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.846-851
    • /
    • 1995
  • A motor-integrated high-speed spindle system with .psi. 65*25, 000rpm is modeled for analytical and experimental studies related to the dynamic characteristics. And the systematic and rational identification processes for evaluating the material properties of spindle and built-in motor is introduced. The impulse excitation method is applied for the experimental model testing, and the dynamic characteristics of test model is theoretically analysed by using the finite element method based on Timoshenko theory. Especially, the experimental and theoetical results reveal that the test model under the required operational conditions has no critical problem for dynamic characteristics.

  • PDF

Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load (경방향 하중을 받는 스핀들 베어링 계의 동특성 연구)

  • Choi, Chun-Suk;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.