• Title/Summary/Keyword: High Speed Press

Search Result 402, Processing Time 0.024 seconds

Evaluation of stress distribution with wind speed in a greenhouse structure

  • Hur, Deog-jae;Noh, Jung-Hun;Lee, Hyun ju;Song, Hyoung woon
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.347-356
    • /
    • 2018
  • In this paper, stress distribution for a structurally stable greenhouse is considered in the present paper with subsequent investigation into the detailed stress distribution contour with the variation of self-weight and wind pressure level designation method under wind velocity of less than 30 m/sec. For reliable analysis, wind pressure coefficients of a single greenhouse unit were modeled and compared with experiment with correlation coefficient greater than 0.99. Wind load level was designated twofold: direct mapping of fluid dynamic analysis and conversion of modeled results into wind pressure coefficients ($C_P$). Finally, design criteria of EN1991-1-4 and NEN3859 were applied in terms of their wind pressure coefficients for comparison. $C_P$ of CFD result was low in the most of the modeled area but was high only in the first roof wind facing and the last lee facing areas. Besides, structural analysis results were similar in terms of stress distribution as per EN and direct mapping while NEN revealed higher level of stress for the last roof area. The maximum stress levels are arranged in decreasing order of mapping, EN, and NEN, generating 8% error observed between the EN and mapping results under 30 m/sec of wind velocity. On the other hand, effect of dead weight on the stress distribution was investigated via variation of high stress position with wind velocity, confirming shift of such position from the center to the forward head wind direction. The sensitivity of stress for wind velocity was less than 0.8% and negligible at wind velocity greater than 20 m/sec, thus eliminating self-weight effect.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

Sloshing suppression by floating baffle

  • Kang, Hooi-Siang;Md Arif, Ummul Ghafir;Kim, Kyung-Sung;Kim, Moo-Hyun;Liu, Yu-Jie;Lee, Kee-Quen;Wu, Yun-Ta
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.409-422
    • /
    • 2019
  • Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism compared to the other methods. However, the additional of the baffle as the internal structure of the LNG tank can lead to frequent damages in long-term usage as this structure absorbs the sloshing loads and thus increases the maintenance cost and downtime. In this paper, a novel type of floating baffle is proposed to suppress the sloshing effect in LNG tank without the need for reconstructing the tank. The sloshing phenomenon in a membrane type LNG tank model was excited under sway motion with 30% and 50% filling condition in the model test. A regular motion by a linear actuator was applied to the tank model at different amplitudes and constant period at 1.1 seconds. Three pressure sensors were installed on the tank wall to measure the impact pressure, and a high-speed camera was utilized to record the sloshing motion. The floater baffle was modeled on the basis of uniform-discretization of domain and tested based on parametric variations. Data of pressure sensors were collected for cases without- and with-floating baffle. The results indicated successful reduction of surface run-up and impulsive pressure by using a floating baffle. The findings are expected to bring significant impacts towards safer sea transportation of LNG.

Evaluation of behavior of updated three-dimensional panel under lateral load in both independent and dependent modes

  • Rezaifar, Omid;Nik, Hamun Adeli;Ghohaki, Majid
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Three-dimensional panels are one of the modern construction systems which can be placed in the category of industrial buildings. There have always been a lot of studies and efforts to identify the behavior of these panels and improve their capacity due to their earthquake resistance and high speed of performance. This study will provide a comparative evaluation of behavior of updated three-dimensional panel's structural components under lateral load in both independent and dependent modes. In fact, this study tries to simultaneously evaluate strengthening effect of three-dimensional panels and the effects of system state (independent, L-shaped and BOX shaped Walls) with reinforcement armatures with different angles on the three-dimensional panels. Overall, six independent wall model, L-shaped, roofed L-shaped, BOX-shaped walls with symmetric loading, BOX -shaped wall with asymmetrical loading and roofed BOX-shaped wall were built. Then the models are strengthened without strengthened reinforcement and with strengthened reinforcements with an angle of 30, 45 and 60 degrees. The applied lateral loading, is exerted by changing the location on the end wall. In BOX-shaped wall, in symmetric and asymmetric loading, the load bearing capacity will be increased about 200 and 50% respectively. Now, if strengthened, the load bearing capacity in symmetric and asymmetric loading will be increased 3.5 and 2 times respectively. The effective angle of placement of strengthened reinforcement in the independent wall is 45 and 60 degrees. But in BOX-shaped and L-shaped walls, the use of strengthened reinforcement 45 degrees is recommended.

Analysis of the machinability of GFRE composites in drilling processes

  • Khashaba, Usama. A.;Abd-Elwahed, Mohamed S.;Ahmed, Khaled I.;Najjar, Ismail;Melaibari, Ammar;Eltaher, Mohamed A
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.417-426
    • /
    • 2020
  • Drilling processes in fiber-reinforced polymer composites are essential for the assembly and fabrication of composite structural parts. The economic impact of rejecting the drilled part is significant considering the associated loss when it reaches the assembly stage. Therefore, this article tends to illustrate the effect of cutting conditions (feed and speed), and laminate thickness on thrust force, torque, and delamination in drilling woven E-glass fiber reinforced epoxy (GFRE) composites. Four feeds (0.025, 0.05, 0.1, and 0.2 mm/r) and three speeds (400, 800, and 1600 RPM) are exploited to drill square specimens of 36.6×36.6 mm, by using CNC machine model "Deckel Maho DMG DMC 1035 V, ecoline". The composite laminates with thicknesses of 2.6 mm, 5.3 mm, and 7.7 mm are constructed respectively from 8, 16, and 24 glass fiber layers with a fiber volume fraction of about 40%. The drilled specimen is scanned using a high-resolution flatbed color scanner, then, the image is analyzed using CorelDraw software to evaluate the delamination factor. Multi-variable regression analysis is performed to present the significant coefficients and contribution of each variable on the thrust force and delamination. Results illustrate that the drilling parameters and laminate thickness have significant effects on thrust force, torque, and delamination factor.

Mapped relationships between pier settlement and rail deformation of bridges with CRTS III SBT

  • Jiang, Lizhong;Liu, Lili;Zhou, Wangbao;Liu, Xiang;Liu, Chao;Xiang, Ping
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • To study the rail mapped deformation caused by the pier settlement of simply - supported bridges with China Railway Track System III (CRTS III) slab ballastless track (SBT) system under the mode of non-longitudinal connection ballastless track slab, this study derived an analytical solution to the mapped relationships between pier settlement and rail deformation based on the interlayer interaction mechanism of rail-pier and principle of stationary potential energy. The analytical calculation results were compared with the numerical results obtained by ANSYS finite element calculation, thus verifying the accuracy of analytical method. A parameter analysis was conducted on the key factors in rail mapped deformation such as pier settlement, fastener stiffness, and self-compacting concrete (SCC) stiffness of filling layer. The results indicate that rail deformation is approximately proportional to pier settlement. The smaller the fastener stiffness, the smoother the rail deformation curve and the longer the rail deformation area is. With the increase in the stiffness of SCC filling layer, the maximum positive deformation of rail gradually decreases, and the maximum negative deformation gradually increases. The deformation of rail caused by the pier settlement of common-span bridge structures will generate low-frequency excitation on high-speed trains.

Study on vibration energy characteristics of vehicle-track-viaduct coupling system considering partial contact loss beneath track slab

  • Liu, Linya;Zuo, Zhiyuan;Zhou, Qinyue;Qin, Jialiang;Liu, Quanmin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.497-506
    • /
    • 2020
  • CA mortar layer disengagement will give rise to the overall structural changes of the track and variation in the vibration form of the ballastless track. By establishing a vehicle-track-viaduct coupling analysis and calculation model, it is possible to analyze the CRTS-I type track structure vibration response while the track slab is disengaging with the power flow evaluation method, to compare the two disengaging types, namely partial contact loss at one edge beneath track slab and partial contact loss at midpoint beneath track slab. It can also study how the length of disengaging influences the track structures vibration power. It is showed that when the partial contact loss beneath track slab, and the relative vibration energy level between the rail and the track slab increases significantly within [10, 200]Hz with the same disengaging length, the partial contact loss at one edge beneath track slab has more prominent influence on the vibration power than the partial contact loss at midpoint beneath track slab. With the increase of disengaging length, the relative vibration energy level of the track slab grows sharply, but it will change significantly when it reaches 1.56 m. Little effect will be caused by the relative vibration energy level of the viaduct. The partial contact loss beneath the track slab will cause more power distribution and transmission between the trail and track slab, and will then affect the service life of the rail and track slab.

Flutter analysis of Stonecutters Bridge

  • Hui, Michael C.H.;Ding, Q.S.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.125-146
    • /
    • 2006
  • Stonecutters Bridge of Hong Kong is a cable-stayed bridge with two single-column pylons each 298 m high and an aerodynamic twin deck. The total length of the bridge is 1596 m with a main span of 1018 m. The top 118 m of the tower will comprise structural steel and concrete composite while the bottom part will be of reinforced concrete. The bridge deck at the central span will be of steel whilst the side spans will be of concrete. Stonecutters Bridge has adopted a twin-girder deck design with a wide clear separation of 14.3 m between the two longitudinal girders. Although a number of studies have been conducted to investigate the aerodynamic performance of twin-girder deck, the actual real life application of this type of deck is extremely limited. This therefore triggered the need for conducting the present studies, the main objective of which is to investigate the performance of Stonecutters Bridge against flutter at its in-service stage as well as during construction. Based on the flutter derivatives obtained from the 1:80 scale rigid section model experiment, flutter analysis was carried out using 3-D finite element based single parameter searching method developed by the second author of this paper. A total of 6 finite element models of the bridge covering the in-service stage as well as 5 construction stages were established. The dynamic characteristics of the bridge associated with these stages were computed and applied in the analyses. Apart from the critical wind speeds for the onset of flutter, the dominant modes of vibration participating in the flutter vibration were also identified. The results indicate that the bridge will be stable against flutter at its in-service stage as well as during construction at wind speeds much higher than the verification wind speed of 95 m/s (1-minute mean).

An innovative approach for the numerical simulation of oil cooling systems

  • Carozza, A.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.169-182
    • /
    • 2015
  • Aeronautics engine cooling is one of the biggest problems that engineers have tried to solve since the beginning of human flight. Systems like radiators should solve this purpose and they have been studied extensively and various solutions have been found to aid the heat dissipation in the engine zone. Special interest has been given to air coolers in order to guide the air flow on engine and lower the high temperatures achieved by the engine in flow conditions. The aircraft companies need faster and faster tools to design their solutions so the development of tools that allow to quickly assess the effectiveness of an cooling system is appreciated. This paper tries to develop a methodology capable of providing such support to companies by means of some application examples. In this work the development of a new methodology for the analysis and the design of oil cooling systems for aerospace applications is presented. The aim is to speed up the simulation of the oil cooling devices in different operative conditions in order to establish the effectiveness and the critical aspects of these devices. Steady turbulent flow simulations are carried out considering the air as ideal-gas with a constant-averaged specific heat. The heat exchanger is simulated using porous media models. The numerical model is first tested on Piaggio P180 considering the pressure losses and temperature increases within the heat exchanger in the several operative data available for this device. In particular, thermal power transferred to cooling air is assumed equal to that nominal of real heat exchanger and the pressure losses are reproduced setting the viscous and internal resistance coefficients of the porous media numerical model. To account for turbulence, the k-${\omega}$ SST model is considered with Low- Re correction enabled. Some applications are then shown for this methodology while final results are shown in terms of pressure, temperature contours and streamlines.