• 제목/요약/키워드: High Speed Material Testing Machine

검색결과 32건 처리시간 0.019초

구치부용 복합 레진 가열시 물리적 성질의 변화에 관한 실험적 연구 (THE EFFECT OF TEMPERATURE CHANGES ON THE PHYSICAL PROPERTIES OF POSTERIOR COMPOSITE RESINS)

  • 박연홍;민병순;최호영;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제14권1호
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study was to examine the effect of temperature dependence of the behavior on the physical properties of posterior composite resins. Three light cure posterior composite resins (Heliomolar, Litefil-P, and P-50) and one chemical cure posterior composite resin (Bisfil-II) were used as experimental materials. Composite resin was placed in a cylindrical brass mold (2.5 mm high and 6.5 mm inside diameter) that was rested on a glass plate. Another flat glass was placed on top of the mold, and the plate was tightly clamped together. After the mold had been filled with the light cure composite material, the top surface was cured for 30 seconds with a light source. Chemical cure resin specimens were made in the same manner as above. Three hundreds and twenty composite resin specimens were constructed from the four composite materials. One hundred and sixty specimens of them were placed in a heater at $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$, $125^{\circ}C$, $150^{\circ}C$, $175^{\circ}C$ and $200^{\circ}C$ for 5 minutes or 10 minutes respectively before compressive strengths were measured. Another one hundred and sixty specimens were tested for the diametral tensile strengths in the same way as above. They were randomly divided into eight groups according to the mode of heating methods as follows and stored in distilled water at $37^{\circ}C$ for 24 hours. Group $37^{\circ}C$ - specimens were stored at $37^{\circ}C$ in distilled water for 24 hours. Group $50^{\circ}C$ - specimens were heated at $50^{\circ}C$ after curing. Group $75^{\circ}C$ - specimens were heated at $75^{\circ}C$ after curing. Group $100^{\circ}C$ - specimens were heated at $100^{\circ}C$ after curing. Group $125^{\circ}C$ - specimens were heated at $125^{\circ}C$ after curing. Group $150^{\circ}C$ - specimens were heated at $150^{\circ}C$ after curing. Group $175^{\circ}C$ - specimens were heated at $175^{\circ}C$ after curing. Group $200^{\circ}C$ - specimens were heated at $200^{\circ}C$ after curing. Twenty specimens of each of four composite resins were respectively made by insertion of materials into same mold for examining the dimensional changes between before and after heating. The final eighty specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing the dimensional changes. Compressive and diametral tensile strengths were measured crosshead speed 1mm/minute and 500Kg in full scale with a mechanical testing machine (DLC 500 Type, Shimadzu Co., Japan). Dimensional changes were determined by measuring the diametral changes of eighty specimens with micrometer (Mitutoyo Co., Japan). Results were as follows: 1. Diametral tensile strengths of specimens in all groups were increased with time heated compared with control group except for that in group $50^{\circ}C$ and the maximum diametral tensile strength was appeared in the specimen of Litefil-P heated for 10 minutes at $100^{\circ}C$. In heliomolar and P-50, it could be seen in the specimen heated for 10 minutes at $150^{\circ}C$, but in Bisfil-II, it could be found in the specimen heated for 5 minutes at $150^{\circ}C$. 2. Compressive strengths of specimens in all groups was tended to be also increased with time heated but that in group $50^{\circ}C$ and the maximum compressive strengths were showed in the same specimens conditioned as the diametral tensile strengths of four composite materials tested. 3. In Heliomolar, Litefil-P, and Bisfil-II, it was decreased in diameters of resin specimens between before heating and increased in diameters of resin specimens after storing in distilled water, but it was not in P-50. 4. There is little difference in diametral tensile strengths, compressive strengths, and dimensional changes followed by heating the resin specimens for 5 minutes and 10 minutes, but there is no statistical significances.

  • PDF

비가열냉동 당근주스의 HACCP 시스템 적용을 위한 미생물학적 위해 분석 (Microbiological Hazard Analysis for HACCP System Application to Non Heat-Frozen Carrot Juice)

  • 이웅수;권상철
    • 한국식품위생안전성학회지
    • /
    • 제29권2호
    • /
    • pp.79-84
    • /
    • 2014
  • 본 연구는 비가열 섭취 냉동 당근주스의 HACCP (Hazard Analysis Critical Control Point)시스템 구축을 위하여 생물학적 위해요소분석을 위한 목적으로 2013년 6월 21일~2014년 3월 30일까지 약 270일간 제주도 제주시 구좌읍 소재에 있는 구좌농협에서 수행하였다. 일반적인 과채주스 제조업체의 제조공정을 참고로 하여 공정도를 작성하였으며, 원료 농산물(당근), 용수와 포장재료 입고, 보관, 세척, 분쇄, 착즙, 냉각, 내포장, 금속검출, 외포장, 보관 및 출하공정에 대하여 Fig. 1과 같이 작성하였다. 원료 당근의 세척 전, 세척 후의 Coliform group, Staphylococcus aureus, Salmonella spp., Bacillus cereus, Listeria Monocytogenes, 장출혈성대장균수를 측정한 결과 Bacillus cereus 는 세척 전 $4.70{\times}10^4CFU/g$이었으나, 세척 후 $1.02{\times}10^2CFU/g$ 검출되었으며, 나머지 병원성균은 검출되지 않았다. 자외선살균공정에서 당근주스의 유속를 변화시키면서 미생물의 변화를 시험한 결과 유속 4 L/min을 한계기준으로 결정하였다. 작업장별 공중낙하균(일반세균수, 대장균, 진균수) 시험결과 세척실의 미생물수는 20 CFU/Plate가 검출되었다. 작업자 손 세척 전후 시험결과 세척 전 일반세균수가 $6{\times}10^4CFU/cm^2$로 높게 나타났으나 손 세척 후에는 검출되지 않아 손 세척 및 소독에 대한 중요성을 교육하고 훈련해야 할 것이다. 제조설비 및 기구의 표면오염도를 검사한 결과 모든 시료에서 대장균군은 검출되지 않았고, 일반세균은 포장기 노즐에서 가장 많은 $8.5{\times}10^4CFU/cm^2$ 검출되었다. 위해분석 결과 병원성미생물을 예방, 감소 또는 제거할 수 있는 자외선살균 공정이 CCP-B (Biological)로 관리되어야 하고, 한계기준은 유속 4 L/min로 결정하였다. 따라서 Kwon의 유산균을 함유한 녹즙의 HACCP에 관한 연구에서와 같이 자외선살균 공정의 한계기준 및 이탈시 조치방법, 검증방법, 교육 훈련과 기록관리 등 철저한 HACCP 관리계획이 필요할 것으로 생각된다.