• Title/Summary/Keyword: High Speed Machining

Search Result 629, Processing Time 0.034 seconds

Characteristics of Cutting Force and Surface Roughness in the High-Speed Machining of Die Material (금형강의 고속가공시 절삭력 및 표면조도의 특성)

  • 손창수;강명창;이용철;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.36-40
    • /
    • 1996
  • The high-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and moulds. In this paper, high-speed milling for HP-4 die material was carried out with coated tungsten carbide ball endmill. In the high-speed machining, the cutting force and surface roughness of workpiece show very various characteristics at different cutting conditions. Especially surface roughness of workpiece depends largely on pick feed and feed per revolution of ball endmill. In the condition that pick feed and feed per revolution are equal, better surface roughness is measured. By obtaining good surface roughness at high speed, efficiency of machining can be increased.

  • PDF

Minimization of Surface Roughness for High Speed Machining by Surface Fitting (곡면 Fitting을 이용한 고속가공 표면거칠기의 최소화)

  • Jung Jong-Yun;Cho Hea-Young;Lee Choon-Man;Moon Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • High speed machining is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. It reduces machining time because of the high feed and the high speed of a spindle. In addition it gets rid of post processes for high precision machining. When the high speed machining is applied to especially hardened steel, operators should select the proper parameters of machining. This can produce machining surfaces which is qualified with good surface roughness. This paper presents a method for selecting machining parameters to minimize surface roughness with high speed machining in cutting the hardened steels. Experimental data for surface roughness are collected in a machining shop based on the cutting feed and the spindle rotation. The data fits in hi-cubic polynomial surface of mathematical form. From the model this research minimize the surface roughness to find the optimal values of the feed and the spindle speed. This paper presents a program which automatically generates optimal solutions from the raw data of experiments.

A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments (실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구)

  • 권병두;고태조;정종윤;정원지;이춘만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.393-396
    • /
    • 1997
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut and feed rate are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

  • PDF

Machinability evaluation according to variation of tool shape in high speed machining (고속가공에서 공구형상 변화에 따른 가공성평가)

  • 하동근;강명창;김정석;김광호;강호연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.346-351
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining field. Because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining is not close behind that of machining tool. So in this study, we made 4 types flat end mill for obtaining data according to tool shape. Especially, we concentrated in helix angle and number of cutting edge. First we confirmed cutting condition by several experiments and measuring cutting force, tool life, tool wear and chip shape according to cutting length. In results, we acquired the fact that 45 degree helix angle and six cutting edge tool is suitable for high speed machining.

  • PDF

A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments (실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구)

  • Lee, Chun-Man;Gwon, Byeong-Du;Go, Tae-Jo;Jeong, Jong-Yun;Jeong, Won-Ji
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.88-96
    • /
    • 2002
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

Selection of Machining Condition in High Speed Machining of STD11 (STD11 금형강의 고속가공에서 가공조건 선정)

  • 이춘만;최치혁;고태조;정종윤;정원지
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.30-38
    • /
    • 2003
  • High-speed machining is one of the most effective technology to enhance productivity especially for hardened die material. High-speed machining can give great advantages for machining of dies and molds. But selection of machining condition is very difficult because of complicated machining mechanism. This paper presents the selection of machining condition in high-speed machining of STD11. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on surface roughness and machining error in Z-direction is discussed to improve machining accuracy.

Performance Evaluation of Endmill in High Speed Machining (고속가공용 엔드밀의 성능평가)

  • 이정무;김건주;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.324-328
    • /
    • 2002
  • Recently, in machining industry much progress has been made by taking advantage of high speed machining. On the other hand as disadvantage high speed machining involves shortening the life of cutting tool. In this research we want to evaluate the performance of appropriate endmill for high speed machining in accordance with surface roughness of land width and clearance angle of flat-endmill

  • PDF

A study on the Analysis and Evaluation of Cutting forces for High Speed Machining by a Ball-end mill (볼엔드밀의 고속가공에서 절삭력 분석 및 평가에 관한 연구)

  • Lee Choon Man;Ryu Seung Pyo;Ko Tae Jo;Jung Jong Yun;Chung Won Jee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.167-174
    • /
    • 2005
  • High-speed machining is one of the most effective technologies to improve productivity Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the analysis and evaluation of cutting force in high-speed machining. Cutter rotation directions, slope directions, spindle revolution and depth of cut are control factors for cutting force. The effect of the control factors on cutting force is investigated for the high speed machining of STD11.

Advanced Machining Technology for Die Manufacturing (금형의 고정도ㆍ고능률 가공기술)

  • 김정석;이득우;정융호;강명창;이기용;김경균;김석원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.48-68
    • /
    • 2000
  • The high-speed machining technology of difficult-to-cut material is needed to achieve the high-efficiency of die manufacturing. The high-speed machining is applied in automobile, airplane and electricityㆍelectro industry etc, because it can improve machining efficiency and productivity with high speed, high power and high rotation. In this study, high speed machinability, tool wear characteristics and its monitoring, characteristics of damaged layer, machinability of difficult-to-cut material, characteristics of a free curved surface and method of CAD/CAM system were introduced to acquire the shortening of machining time, the improvement of machining efficiency and the high quality of machined surface. Therefore, we establish the stabilization condition of difficult-to-cut material machining and present the optimal cutting condition for high-efficiency cutting.

  • PDF

A Study on the Machining Accuracy Evaluation Method of High Speed Machining (고속가공 시스템의 가공정밀도 평가방법에 관한 연구)

  • 손덕수;유중학;최성주;이우영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.94-99
    • /
    • 2002
  • KS and ISO have proposed several evaluation methods of conventional machine tools. Even though the accuracy of the tools can be evaluated with these methods, there are still no proper evaluation methods of high speed machining. Because it is hard to evaluate characteristics of high speed machining such as decrease of cutting temperature, cutting force, and reduced machining time. Therefore, new evaluation method for high speed machine should be developed. In this paper, several shapes of model have been proposed to evaluate cutting accuracy of high speed machine.

  • PDF