• 제목/요약/키워드: High Speed Flow Visualization

검색결과 132건 처리시간 0.025초

Visualization Study on Kinematics of Bubble Motion in a Water Filled Cylindrical Tank (원형 탱크 내부의 기포운동에 대한 가시화 연구)

  • Kim, Sang-Moon;Jeong, Won-Taek;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • 제8권3호
    • /
    • pp.41-48
    • /
    • 2010
  • A visualization study to evaluate bubble motion in a tab water filled cylindrical tank with a varying flow rate of compressed air is conducted. The flow rate of compressed air varies from 1 to 5 L/min. Time resolved images are acquired by a high speed camera in 10 bit gray level at 100 fps and the measurement volume is irradiated by a 230 W halogen lamp. It is observed that there are three different regions; the bubble formation region, the rising bubble region and the free surface region. During the rise of bubble, the shape is changed as if an elastic body. Based on the binarized bubble image, the mean diameters of rising bubbles are estimated at beneath of the free surface. As the gas flow rate increases, the mean diameter is increased and the rising velocity also increases with buoyancy force.

Flow Characteristics of Liquid Ramjet Engines using Two Color PIV

  • Ahn Kyubok;Yoon Youngbin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.151-163
    • /
    • 2001
  • A two color PIV technique has been developed for visualization of complex and high speed flow in a ramjet combustor. Two color PIV has the advantages that velocity distributions in high speed flowfields can be measured simply by varying the time interval between two different laser beams and a directional ambiguity problem can be solved by color separation, and then a signal-to-noise ratio can be increased through nearly perfect cross-correlation. As a basic research of the ramjet engine, a 2-D shaped combustor with two symmetric air intakes has been manufactured and an experimental study has been conducted using a two color PIV technique. The flow characteristics such as recirculation zones, intake air mixing and turbulent kinetic energy have been investigated varying inlet angles and dome heights. It was found that the primary recirculation zone is affected mainly by the dome height, whereas the secondary recirculation zone is influenced by the air inlet angle.

  • PDF

Visualization of micro-interfacial conditions using Micro PIV

  • OKAMOTO Koji;SHINOHARA Kyosuke;SUGII Yasuhiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.111-118
    • /
    • 2004
  • A new micro-resolution PIV (Particle Image. Velocimetry) has been developed. To investigate transient phenomena in a microfluidic device, Dynamic micro-PIV system was realized by combining a high-speed camera and a CW(Continuous Wave) laser. The technique was applied to a micro-counter-current flow, consisting of water and butyl acetate. The velocity fields of water in the micro counter-current flow were visualized for a time resolution of 500 $\{mu}s$ and a spatial resolution of 2.2 x 2.2 $\{mu}m$. Using the Dynamic micro-PIV technique, the vortex-like motions of fluorescent particles at the water-butyl acetate interface were captured clearly

  • PDF

Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile (고속탄자 유동의 가시화 실험 및 비정렬격자 계산)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제6권2호
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

Flow Field Analysis inside Intake Nozzles of a Household Vacuum Cleaner

  • Daichin Daichin;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.733-736
    • /
    • 2002
  • The inside configuration of intake nozzle of vacuum cleaner greatly affects the dust-collection efficiency and acoustic-noise effect generated from flow separation Interaction between high-speed flow and internal structure. In order to improve the performance of the vacuum cleaner, flow fields inside the intake nozzles were investigated using flow visualization and FIV (Particle Image Vetocimetry) technique. The measurement to aerodynamic power, suction efficiency and noise level were also carried out. Valuable information was obtained from the experiments, revealing how to modify the intake nozzle. In this paper, the results of visualization, velocity distribution of flow fields, aerodynamic power, suction efficiency and noise level are discussed.

  • PDF

An Experimental Study of Flow Field in a Torque Converter (토크 컨버터 내부 유동장의 실험적 연구)

  • Yoo, S.C.
    • Journal of the Korean Society of Visualization
    • /
    • 제8권4호
    • /
    • pp.19-25
    • /
    • 2010
  • The flow field measurements were conducted on the planes between impeller blades, and the gap between the impeller and turbine blades under speed ratio of 0.4. The study showed that high velocity regions move from locations near the suction surface of the impeller to the pressure blade, shroud corner as flow progresses from the mid-chord of impeller passage to exit and out into the gap region. Planes 3 through 5 also showed flow reversal occurring in the area near the shell surface and progress far into the impeller passage from the impeller passage exit, near shell surface. This affected the converter efficiency negatively. This study would aid in the construction of higher accuracy CFD models of this complex turbomachinery device.

Visualization of cross-sectional two-phase flow structure during in-tube condensation (관내 응축 시 2상유동 단면구조의 가시화)

  • Pusey, Andree;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • 제14권2호
    • /
    • pp.18-24
    • /
    • 2016
  • This paper presents an experimental investigation to visualize cross-sectional two-phase flow structure and identify liquid-gas interface for condensation of steam at a low mass flux in a slightly inclined tube using the axial-viewing technique, which permits to look directly into flow during condensation of steam. In this technique, two-phase flow is viewed along the axis of a pipe by locating a high-speed video camera in front of a viewer that is fitted at the outlet of the pipe. A short section of the pipe is illuminated and is recorded through the viewer, which is kept free of liquid by mildly introducing air. Experiments were conducted in a pipe of 19.05 mm in inner diameter at atmospheric pressure. Cross-sectional two-phase flow structure is obtained at a steam mass flux of $2.62kg/m^2s$ as a function of steam quality in the range from 0.5 to 0.9. The results show that stratified-wavy flow is a unique flow pattern observed in the scope of the present study. Condensate film thickness, stratification angle and void fraction were measured from the obtained flow structure images. Finally, heat transfer coefficient was calculated using the measurement data and discussed in comparison with existing correlations.

Characteristics of Bubble-driven Flow with Varying Flow Rates by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 유량에 따른 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • 제6권2호
    • /
    • pp.14-19
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble flow in a rectangular water tank is studied. The Time-resolved PIV technique is adopted for the quantitative visualization and analysis. 532 nm Diode CW laser is used for illumination and orange fluorescent particle images are acquired by a PCO 10bit high-speed camera. To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is changed from 2 l/min to 4 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by the POD analysis technique. It is observed that the large scale counterclockwise rotation and main vortex is generated in the upper half depth from the free surface and one quarter width from the sidewall. When the flow rates are increased, the main vortex core is moved to the side and bottom wall direction.

Characteristics of Bubble-driven Flow by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • 제6권1호
    • /
    • pp.41-46
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble stream in a rectangular water tank is studied. The time-resolved PIV technique is adopted for the quantitative visualization and analysis. 488 nm Ar-ion CW laser is used for illumination and orange fluorescent ($\lambda_{ex}=540nm,\;\lambda_{em}=560nm$) particle images are acquired by a PCO 10bit high-speed CCD camera (1280$\times$1024). To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is 3 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by time-resolved POD analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortex structures moving along with large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy.