• 제목/요약/키워드: High Speed Cutter

검색결과 54건 처리시간 0.027초

공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선 (The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining)

  • 손황진;임은성;정윤교
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

볼엔드밀의 고속가공에서 절삭력 분석 및 평가에 관한 연구 (A study on the Analysis and Evaluation of Cutting forces for High Speed Machining by a Ball-end mill)

  • 이춘만;류승표;고태조;정종윤;정원지
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.167-174
    • /
    • 2005
  • High-speed machining is one of the most effective technologies to improve productivity Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the analysis and evaluation of cutting force in high-speed machining. Cutter rotation directions, slope directions, spindle revolution and depth of cut are control factors for cutting force. The effect of the control factors on cutting force is investigated for the high speed machining of STD11.

항공기 대형구조물의 고속가공에 관한 연구 (A Study on the High Speed Machining of Major Structure in Aircraft)

  • 이우명;김남경;김해지;장정환;(주)Yulkok
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.119-124
    • /
    • 2012
  • The study on high speed machining was conducted for wing and rib parts of major structure in aircraft in order to investigate a optimal cutting condition and machining method using a high speed machine with 33,000rpm. Preliminary tests, such as high speed cutter test and spindle vibration test of high speed machine, were performed and the high speed machining was conducted in 3times after the preliminary test results were applied to a NC program for manufacturing.

Ti 합금의 고속가공시 밀링특성에 관한 연구 (High speed milling titanium alloy)

  • Ming CHEN;Youngmoon LEE;Seunghan YANG;Seungil CHANG
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.454-459
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration, the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. the chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number og shear ribbons and bigger shear angle than at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability region, depression of temperature increment, auti-fatigability as well as surface roughness. The burrs always exists both at low cutting speed and at high cutting speed. So the deburr process should be arranged for milling titanium alloy in any case.

  • PDF

고속 가공용 엔드밀의 형상설계에 관한 연구 (Study on the Design of End Mill Geometry for the High Speed Machining)

  • 이상규;배승민;고성림;김경배;서천석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.67-70
    • /
    • 2001
  • The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter(rake angle, clearance angle, length of cutter) and cutting process(cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

최적형상의 고속용 엔드밀 설계를 위한 프로그램 개발 (Development of the program for Optimal Design of High Speed Endmill)

  • 고성림;한창규;서천석;김경배
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.500-503
    • /
    • 2003
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

고속가공용 엔드밀 형상설계 S/W 개발 (Development of Geometric Design S/W for High Speed End Mill)

  • 한창규;고성림;서천석;김경배
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.422-427
    • /
    • 2004
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining and to develop a software for design of end mill geometry.

  • PDF

엔드밀 형상에 따른 가공특성 분석을 이용한 형상설계 S/W 개발 (Development of Geometry Design S/W using Analysis on Machining Characterization considering EndMill Geometry)

  • 한창규;고성림;유중학;서천석;김경배
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.111-117
    • /
    • 2004
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process. In high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining and developed tool geometry design S/W.

  • PDF

5축 가공기를 이용한 고경도 수지의 최적가공조건 선정 (Selection of the Optimal Machining Condition for a High-hardness Resin using the 5-axis Machine)

  • 김남훈
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.29-34
    • /
    • 2012
  • This study describes the selection of optimum machining conditions for a high-hardness resin by using a large 5-axis machine. The experiments were conducted to examine the main factors that affect the surface roughness, such as the spindle speed, axial and radial depths of the cut, and pattern of the cutter path. To analyze the experiment results, the factor with the biggest impact on machining was determined using the smaller-the-better characteristic of the Taguchi method; the effectiveness of the experiment was then confirmed by verifying the selected optimum machining condition.

Ti 합금의 고속가공시 밀링특성에 관한 연구 (High Speed Milling of Titanium Alloy)

  • Chen, Ming;Lee, Young-Moon;Yang, Seung-Han;Jang, Seung-Il
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.34-39
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. The chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number of shear ribbons and bigger shear angle than that at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability mot depression of temperature increment anti-fatigability as well as surface roughness. The burrs always exist both at low cutting speed and at high cutting speed. So the deburring process should be arranged for milling titanium alloy in my case.