• Title/Summary/Keyword: High Speed Bending

Search Result 210, Processing Time 0.022 seconds

Analysis of Dynamic Response Characteristics for KTX and EMU High-Speed Trains on PSC-Box Railway Bridges (PSC-box 철도교량의 KTX 및 EMU 고속열차에 대한 동적 응답 특성 분석)

  • Manseok Han;Min-Kyu Song;Soobong Shin;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • The majority of high-speed railway bridges along the domestic Gyeongbu and Honam lines feature a PSC-box type structure with a span length ranging from 35 to 40m, which typically exhibits a first bending natural frequency of approximately 4 to 5Hz. When KTX high-speed trains transverse these bridges at speeds ranging from 290 to 310km/h, the vibration induced by the trains approaches the first bending natural frequency of the bridge. Furthermore, with the upcoming operation of a EMU-320 high-speed train and the anticipated increase in the speeds of these high-speed trains, there is a need to analyze the dynamic response of high-speed railway bridges. For this, based on measured responses from actual railway bridges, a numerical model was constructed using a numerical model updating technique. The dynamic response of the updated numerical model exhibited a strong agreement with the measured response from the actual railway bridges. Subsequently, this updated model was utilized to analyze the dynamic response characteristics of the bridges when KTX and EMU-320 trains operate at increased speeds. The maximum vertical displacement and acceleration at the mid-span of the bridges were also compared to those specified in the railway design standard with the increasing speed of KTX and EMU-320.

The Shape Optimization of washing Machine Shaft for High-Speed Rotation through Analysis of Static and Dynamic Characteristics (정특성 및 동특성 해석을 통한 고속세탁기 주축의 형상 최적화)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.132-139
    • /
    • 2008
  • To meet demand of big capacity and high speed rotation for washing machine, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Also, Vibration occurs due to the frequency of the rotating parts. But, shaft has various design factors such as diameter and distance between bearings according to configuration of shaft, the optimal values can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor under bending, twist and vibration and proposed optimum design using center composition method among response surface derived from regression equation of simulation-based DOE.

Improvement Method of the Sound Insulation Performance of Aluminium Extruded Panels by the Unit Structure Modification (단위 구조 변경에 의한 알루미늄 압출재의 차음성능 개선)

  • Lee, Hyun-Woo;Kim, seock-Hyun;Kim, Jeong-Tae;Song, Dal-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.457-462
    • /
    • 2009
  • In a high speed train, aluminium extruded panel is widely used in floor, side wall and roof structures for high bending stiffness and weight reduction. However, with some inevitable reasons, aluminium extruded panel shows inferior sound insulation performance compared with the flat panel having same weight. Especially, occurrence of local resonance modes in the particular frequency band, is one of the main reason in the deterioration of the sound insulation performance. Local resonance modes are generated in the structure which consists of periodic unit structure, such as the aluminium extruded panel. The local resonance frequency is determined by the specification of the unit structure. In this study, we predict the local resonance frequency band on the aluminium extruded panel used for the high speed train, and investigate how the design modification in the unit structure influences the local resonance frequency band and panel bending stiffness. The purpose of the study is to provide the design information for the effective unit structure in order to improve the sound insulation performance of the aluminium extruded panel.

  • PDF

Measurement of Vibration Signals of a Gun Barrel Type Structure using Mechanical Filter (기계적 필터를 이용한 포신형상 구조물의 진동신호 측정)

  • Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.440-443
    • /
    • 2010
  • This paper deals with the method of vibration measurement of a gun barrel structure using mechanical filter. When a bullet with high speed is moving within a gun barrel type structure with low bending vibration frequencies, it is difficult to measure the bending vibration signals of the structure. For example, noncontact type sensors such as displacement or velocity sensor are not appropriate for the measurement of vibrational signals because of the movement effect of the equipment frame through the moving structures or effect of the ground vibration. One of contact type sensors such as accelerometer is profitable for measurement of vibrational signals because of its wide measurement ranges. In the case of a gun barrel structure including high vibrational signals like shock waves, however, it is necessary to propose vibration measurement method filtering high frequencies. The purpose of the paper is to propose the proper vibrational measurement technique filtering high frequencies of a gun barrel type structure.

Analysis of Dynamic Characteristics of A High-speed Milling Spindle with a Drawbar and a Built-in Motor (고속 주축계에서 드로우바와 내장형 모터가 주축계의 동적 특성에 미치는 영향 분석)

  • Lim J.S.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1640-1643
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a drawbar and a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft and considering the mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of spindle. And considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

  • PDF

Selecting Position of Bearings to Improve Dynamic Characteristics of A High-speed Milling Spindle (고속 주축의 진동 특성 향상을 위한 베어링의 위치 선정)

  • Lim J.S.;Hwang Y.K.;Lee W.C.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools. to improve tire machining flexibility of machine. tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In the spindle system design, it is very important to improve modal characteristics, and modal analysis is performed in the first place. Therefore in this paper, on the assumption that supporting bearings of spindle was selected most suitable condition, analyzed dynamic characteristics of a high-speed spindle according to its position. Optimal design was applicated to select most suitable position of bearings. Considered tile mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows the natural frequency of 1st bending mode of spindle.

  • PDF

Thrust Bearing Design for High-Speed Composite Air Spindles (고속 복합재료 공기 주축부를 위한 추력베어링 설계)

  • Bang, Kyung-Geun;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

Analysis of Rolling Contact Surface on PM-High Speed Steel by X-ray Diffraction (구름접촉을 하는 분말고속도공구강의 X선을 이용한 표면성상해석)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior performance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PH-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on super-saturated carbon in PM-HSS.

A Study on the Performance of Optical Fiber Displacement Sensor for Monitoring High Speed Spindle according to Properties of Optical Fiber (고속주축 모니터링용 광파이버 변위센서의 파이버 특성에 따른 센서 성능 연구)

  • 박찬규;신우철;배완성;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.385-389
    • /
    • 2003
  • To make high speed spindle system work properly, sensors with outstanding resolution and dynamic characteristics are essential. An optical fiber displacement sensor is based on simple principles. Electrical signal responds to the optical flux change due to the displacement change between a target and a sensor probe. In this paper, the performance of optical fiber displacement sensor has been investigated according to properties of optical fiber Firstly, optical loss has been measured before and after polishing optical fiber endface. Secondly, allowance of optical fiber bending has been tested. thirdly sensitivity and linear range of the sensor has been found out according to the shape of cross section of optical fiber.

  • PDF

Analysis of Dynamic Characteristics of A High-speed Milling Spindle Due to Support Stiffness of Drawbar (고속주축의 드로우바 지지조건에 따른 동특성 해석)

  • 노승국;박종권;경진호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.484-487
    • /
    • 2003
  • In designing AMBs (active magnetic bearings) for high-speed spindle system, the shaft is usually assumed as a rigid rotor. For automatic tool change process, there should be a tool clamping system with drawbar using spring or hydraulic force, and the drawbar in the spindle can be in various condition of support during design and manufacturing error. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1$\^$st/ bending mode of spindle.

  • PDF