• Title/Summary/Keyword: High Resolution

Search Result 8,018, Processing Time 0.033 seconds

Quad Tree Based 2D Smoke Super-resolution with CNN (CNN을 이용한 Quad Tree 기반 2D Smoke Super-resolution)

  • Hong, Byeongsun;Park, Jihyeok;Choi, Myungjin;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • Physically-based fluid simulation takes a lot of time for high resolution. To solve this problem, there are studies that make up the limitation of low resolution fluid simulation by using deep running. Among them, Super-resolution, which converts low-resolution simulation data to high resolution is under way. However, traditional techniques require to the entire space where there are no density data, so there are problems that are inefficient in terms of the full simulation speed and that cannot be computed with the lack of GPU memory as input resolution increases. In this paper, we propose a new method that divides and classifies 2D smoke simulation data into the space using the quad tree, one of the spatial partitioning methods, and performs Super-resolution only required space. This technique accelerates the simulation speed by computing only necessary space. It also processes the divided input data, which can solve GPU memory problems.

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.

Resolution-independent Up-sampling for Depth Map Using Fractal Transforms

  • Liu, Meiqin;Zhao, Yao;Lin, Chunyu;Bai, Huihui;Yao, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2730-2747
    • /
    • 2016
  • Due to the limitation of the bandwidth resource and capture resolution of depth cameras, low resolution depth maps should be up-sampled to high resolution so that they can correspond to their texture images. In this paper, a novel depth map up-sampling algorithm is proposed by exploiting the fractal internal self-referential feature. Fractal parameters which are extracted from a depth map, describe the internal self-referential feature of the depth map, do not introduce inherent scale and just retain the relational information of the depth map, i.e., fractal transforms provide a resolution-independent description for depth maps and could up-sample depth maps to an arbitrary high resolution. Then, an enhancement method is also proposed to further improve the performance of the up-sampled depth map. The experimental results demonstrate that better quality of synthesized views is achieved both on objective and subjective performance. Most important of all, arbitrary resolution depth maps can be obtained with the aid of the proposed scheme.

High-resolution Numerical Wind Map for Korean (한반도 고해상도 수치바람지도 구축)

  • Lee, Hwa-Woon;Kim, Dong-Hyeuk;Lee, Soon-Hwan;Kim, Min-Jung;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.463-466
    • /
    • 2009
  • The numerical simulation optimized by Four Dimensional Data Assimilation (FDDA) with Quick Scatterometer (QuikSCAT) data is carried out to evaluate wind resource characteristics at various heights in the southeastern area of the Korean Peninsula, where wind farms are planned to be built on on- and off-shore as well as comparable diurnal wind variations are characterized at the surface. The temporal and spatial distributions of modeled wind speeds showed good agreement with the observations based on the temporal variation analysis. Model results indicate that the higher model is performed in resolution, the more precise results is at turbine hub height. Occasionally, wind speed variations for each numerical resolution has a different regional and seasonal variations. In the coast area, hub height wind speed of 9km-resolution is simillar to that of 3km-resolution. On the other hand, hub height wind speed of 3km-resolution is simillar to that of 1km-resolution in the Jiri mountainous area.

  • PDF

EXTRACTING BASE DATA FOR FLOOD ANALYSIS USING HIGH RESOLUTION SATELLITE IMAGERY

  • Sohn, Hong-Gyoo;Kim, Jin-Woo;Lee, Jung-Bin;Song, Yeong-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.426-429
    • /
    • 2006
  • Flood caused by Typhoon and severe rain during summer is the most destructive natural disasters in Korea. Almost every year flood has resulted in a big lost of national infrastructure and loss of civilian lives. It usually takes time and great efforts to estimate the flood-related damages. Government also has pursued proper standard and tool for using state-of-art technologies. High resolution satellite imagery is one of the most promising sources of ground truth information since it provides detailed and current ground information such as building, road, and bare ground. Once high resolution imagery is utilized, it can greatly reduce the amount of field work and cost for flood related damage assessment. The classification of high resolution image is pre-required step to be utilized for the damage assessment. The classified image combined with additional data such as DEM and DSM can help to estimate the flooded areas per each classified land use. This paper applied object-oriented classification scheme to interpret an image not based in a single pixel but in meaningful image objects and their mutual relations. When comparing it with other classification algorithms, object-oriented classification was very effective and accurate. In this paper, IKONOS image is used, but similar level of high resolution Korean KOMPSAT series can be investigated once they are available.

  • PDF

Chromosome Analysis by GTG, High-Resolution, and NOR-banding Techniques in the Dog (Cams familaris) (GTG, High-Resolution, Nor-banding에 의한 개의 염색체 분석)

  • 김종봉;윤인숙
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.605-609
    • /
    • 2002
  • None of the numerous published canine idiograms and karyotypes has yet been generally accepted as a standard one because the dog has 76 acrocentric autosomes of similar size and shape. To establish canine banded karyotype from the 22nd chromosome to the 37th chromosome, we analyzed canine chromosomes by GTG, high resolution, and NOR-banding techniques. The GTG and high resolution banding patterns of canine chromosomes corresponded to other reports described previously except for a few chromosomes. While other researchers observed 12 bands, we observed 7 bands in the banding patterns of chromosome 24, 34 and 37. On the other hand, the banding patterns by NOR-banding technique showed that three pairs of autosomes have nucleolus organizer regions at the terminal ends of their long arm, and the Y chromosome has it in its short arm terminal. However, the X chromosome has no nucleolus organizer like other mammals.

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

Comparative analysis of the deep-learning-based super-resolution methods for generating high-resolution texture maps (고해상도 텍스처 맵 생성을 위한 딥러닝 기반 초해상도 기법들의 비교 분석 연구)

  • Hyeju Kim;Jah-Ho Nah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.31-40
    • /
    • 2023
  • As display resolution increases, many apps also tend to include high-resolution texture maps. Recent advancements in deep-learning-based image super-resolution techniques make it possible to automate high-resolution texture generation. However, there is still a lack of comprehensive analysis of the application of these techniques to texture maps. In this paper, we selected three recent super-resolution techniques, namely BSRGAN, Real-ESRGAN, and SwinIR (classical and real-world image SR), and applied them to upscale texture maps. We then conducted a quantitative and qualitative analysis of the experimental results. The findings revealed various artifacts after upscaling, which indicates that there are still limitations in directly applying super-resolution techniques to texture-map upscaling.

Generation of Simulated Geospatial Images from Global Elevation Model and SPOT Ortho-Image

  • Park, Wan Yong;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • With precise sensor position, attitude element, and imaging resolution, a simulated geospatial image can be generated. In this study, a satellite image is simulated using SPOT ortho-image and global elevation data, and the geometric similarity between original and simulated images is analyzed. Using a SPOT panchromatic image and high-density elevation data from a 1/5K digital topographic map data an ortho-image with 10-meter resolution was produced. The simulated image was then generated by exterior orientation parameters and global elevation data (SRTM1, GDEM2). Experimental results showed that (1) the agreement of the image simulation between pixel location from the SRTM1/GDEM2 and high-resolution elevation data is above 99% within one pixel; (2) SRTM1 is closer than GDEM2 to high-resolution elevation data; (3) the location of error occurrence is caused by the elevation difference of topographical objects between high-density elevation data generated from the Digital Terrain Model (DTM) and Digital Surface Model (DSM)-based global elevation data. Error occurrences were typically found at river boundaries, in urban areas, and in forests. In conclusion, this study showed that global elevation data are of practical use in generating simulated images with 10-meter resolution.