• Title/Summary/Keyword: High Range Resolution Radar

Search Result 101, Processing Time 0.036 seconds

Signal subspace comparison between Physical & synthesized array data in echo imaging

  • Choi, Jeong-Hee
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.262-267
    • /
    • 1998
  • In Synthetic Aperture Radar(SAR) imaging, the echoed data are collected by moving radar's position with respect to the target area, and this operation actually gives effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion scheme for SAR Imaging, we uses an inversion scheme which uses no approximation in wave propagation analysis, and try to verify whether the collected data with synthesized aperture actually gives the same support as that with physical aperture in the same size. To do this, we make a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparison and numerical analysis using Gram-Schmidt procedures had been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry and strongly support the proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

Motion Derivatives based Entropy Feature Extraction Using High-Range Resolution Profiles for Estimating the Number of Targets and Seduction Chaff Detection (표적 개수 추정 및 근접 채프 탐지를 위한 고해상도 거리 프로파일을 이용한 움직임 미분 기반 엔트로피 특징 추출 기법)

  • Lee, Jung-Won;Choi, Gak-Gyu;Na, Kyoungil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • This paper proposes a new feature extraction method for automatically estimating the number of target and detecting the chaff using high range resolution profile(HRRP). Feature of one-dimensional range profile is expected to be limited or missing due to lack of information according to the time. The proposed method considers the dynamic movements of targets depending on the radial velocity. The observed HRRP sequence is used to construct a time-range distribution matrix, then assuming diverse radial velocities reflect the number of target and seduction chaff launch, the proposed method utilizes the characteristic of the gradient distribution on the time-range distribution matrix image, which is validated by electromagnetic computation data and dynamic simulation.

A Comparative Study of the Rainfall Intensity Between Ground Rain Gauge and Weather Radar (지상우량계와 기상레이더 강우강도의 비교연구)

  • Ryu, Chan-Su;Kang, In-Sook;Lim, Jae-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2011
  • Today they use a weather radar with spatially high resolution in predicting rainfall intensity and utilizing the information for super short-range forecast in order to make predictions of such severe meteorological phenomena as heavy rainfall and snow. For a weather radar, they use the Z-R relation between the reflectivity factor(Z) and rainfall intensity(R) by rainfall particles in the atmosphere in order to estimate intensity. Most used among the various Z-R relation is $Z=200R^{1.6}$ applied to stratiform rain. It's also used to estimate basic rainfall intensity of a weather radar run by the weather center. This study set out to compare rainfall intensity between the reflectivity of a weather radar and the ground rainfall of ASOS(Automatic Surface Observation System) by analyzing many different cases of heavy rain, analyze the errors of different weather radars and identify their problems, and investigate their applicability to nowcasting in case of severe weather.

A Study on the Azimuth Direction Extrapolation for SAR Image Using ω-κ Algorithm (ω-κ 알고리즘을 이용한 SAR 영상의 방위각 방향 외삽 기법 연구)

  • Park, Se-Hoon;Choi, In-Sik;Cho, Byung-Lae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.1014-1017
    • /
    • 2012
  • In this paper, we introduce a method which enhances the azimuth resolution to obtain the high-resolution SAR image. We used ${\omega}-k$ algorithm to obtain the SAR image and extrapolation using auto-regressive(AR) method to enhance the azimuth resolution in the 2-D frequency domain. The AR method is a linear prediction model-based extrapolation technique. In the result, we showed the performance comparison with respect to the target range and the prediction order of Burg algorithm which is one of AR method.

Research on Broadband Signal Processing Techniques for the Small Millimeter Wave Tracking Radar (소형 밀리미터파 추적 레이더를 위한 광대역 신호처리 기술 연구)

  • Choi, Jinkyu;Na, Kyoung-Il;Shin, Youngcheol;Hong, Soonil;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Joo, Jihan;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a small tracking radar requires the development of a small millimeter wave tracking radar having a high range resolution that can acquire and track a target in various environments and disable the target system with a single blow. Small millimeter wave tracking radar with high range resolution needs to implement a signal processor that can process wide bandwidth signals in real time and meet the requirements of small tracking radar. In this paper, we designed a signal processor that can perform the role and function of a signal processor for a small millimeter wave tracking radar. The signal processor for the small millimeter wave tracking radar requires the real-time processing of input signal of OOOMHz center frequency and OOOMHz bandwidth from 8 channels. In order to satisfy the requirements of the signal processor, the signal processor was designed by applying the high-performance FPGA (Field Programmable Gate Array) and ADC (Analog-to-digital converter) for pre-processing operations, such as DDC (Digital Down Converter) and FFT (Fast Fourier Transform). Finally, the signal processor of the small millimeter wave tracking radar was verified via performance test.

Design of Ultra Wide Band Radar Transceiver for Foliage Penetration (수풀투과를 위한 초 광대역 레이더의 송수신기 설계)

  • Park, Gyu-Churl;Sun, Sun-Gu;Cho, Byung-Lae;Lee, Jung-Soo;Ha, Jong-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • This study is to design the transmitter and receiver of short range UWB(Ultra Wide Band) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. The transmitter needs two transmitters to improve the azimuth resolution. Multi-channel receivers are required to synthesize radar image. Transmitter consists of high power amplifier, channel selection switch, and waveform generator. Receiver is composed of sixteen channel receivers, receiver channel converter, and frequency down converter, Before manufacturing it, the proposed architecture of transceiver is proved by modeling and simulation using several parameters. Then, it was manufactured by using industrial RF(Radio Frequency) components and all other measured parameters in the specification were satisfied as well.

Inverse Synthetic Aperture Radar Imaging Using Stepped Chirp Waveform (계단 첩 파형(Stepped Chirp Waveform)을 이용한 ISAR 영상 형성)

  • Lee, Seong-Hyeon;Kang, Min-Suk;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.930-937
    • /
    • 2014
  • Inverse synthetic aperture radar (ISAR) images can be generated by radar which radiates the electromagnetic wave to a target and receives signal reflected from the target. ISAR images can be widely used to target detection and recognition. This paper proposed a method of generation of high resolution ISAR images by synthesizing frequency spectrums of each stepped chirp waveform in one burst and sub-sampling in frequency domain. This process is performed over entire bursts during coherent processing interval. Conventional ISAR image generation method using stepped frequency waveform has a severe problem of short unambiguous range, loading to ghost phenomenon. However, this problem can be resolved by the proposed method. In simulations, we generate high resolution ISAR image of the moving target which is Boeing-737 aircraft model composed of several ideal point scatterers.

Analysis of Target Identification Performances Based on HRR Profiles against the Moving Targets (HRR Profile을 이용한 이동 표적에 대한 표적 식별 성능 분석)

  • Park, Jong-Il;Jung, Sang-Won;Kim, Kyung-Tae;Chun, Jong-Hoon;Bae, Jun-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.289-295
    • /
    • 2009
  • HRR(High Resolution Range) profiles show one-dimensional radar images including electromagnetic scattering phenomena of a target. Thus, they are not only robust to noise, but also easily obtainable in a real-time. However, in order to construct a training database for the success of radar target identification, a huge amount of HRR profiles are needed because HRR profiles are highly dependent on the relative angle between the radar and the target. In order to alleviate this difficulty, a database construction method based on the scenarios of target's movement is proposed. The proposed method is able to provide a reliable target identification performance even with a small amount of training database.

A CMOS UWB RFIC Based Radar System for High Speed Target Detection (초고속 이동체 탐지에 적합한 초광대역 CMOS RFIC 기반 레이다 시스템)

  • Kim, Sang Gyun;Eo, Yun Seong;Park, Hyung Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.419-425
    • /
    • 2017
  • This paper presents CMOS UWB RFIC based radar system for high speed target detection. The system can achieve resolution of 15 cm and detection range of 15 m. For developed system, single chip CMOS UWB IC is implemented. To reduce the measuring and processing time, envelope detection and equivalent time sampling technique are used. Measurement results show that the bandwidth and center frequency of UWB pulse can be adjusted in the range of 0.5 GHz~1.0 GHz, 3.5 GHz~4.5 GHz, respectively. Signal processing time including scan time over 15 m distance is about $150{\mu}sec$.

Extension of Range Migration Algorithm for Airborne SAR Data Processing

  • Shin, Hee-Sub;Song, Won-Gyu;Son, Jun-Won;Jung, Yong-Hwan;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.857-860
    • /
    • 2005
  • Several algorithms have been developed for the data processing of spotlight synthetic aperture radar (SAR). In particular, the range migration algorithm (RMA) does not assume that illuminating wavefronts are planar. Also, a high resolution image can be obtained by the RMA. This paper introduces an extension of the original RMA to enable a more efficient airborne SAR data processing. We consider more general motion and scene than the original RMA. The presented formulation is analyzed by using the principle of the stationary phase. Finally, the extended algorithm is tested with numerical simulations using the pulsed spotlight SAR.

  • PDF