• Title/Summary/Keyword: High Pressure Reactor

Search Result 459, Processing Time 0.02 seconds

Evaluation of a Sodium-Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

  • Ahn, Sang June;Ha, Kwi-Seok;Chang, Won-Pyo;Kang, Seok Hun;Lee, Kwi Lim;Choi, Chi-Woong;Lee, Seung Won;Yoo, Jin;Jeong, Jae-Ho;Jeong, Taekyeong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.952-964
    • /
    • 2016
  • The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium-water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium-water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

Superheated Water-Cooled Small Modular Underwater Reactor Concept

  • Shirvan, Koroush;Kazimi, Mujid
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1338-1348
    • /
    • 2016
  • A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at $500^{\circ}C$ to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

Design of Hardward Diagnostic System for Reactor Internal Structures Using Neutron Noise (중성자 신호이용 원자로 내부 구조물 감시시스템 하드웨어 설계)

  • Park, Jong-Beom;Park, Jin-Ho;Hwang, Choong-Hwan;Kim, Soo-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2166-2168
    • /
    • 2001
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics. The Reactor internal structures which consist of many complex components are subjected to flow-induced vibration due to high temperature and pressure in reactor coolant system. The above flow-induced vibration causes degradation of structural integrity of the reactor and may result in loosing mechanical binding component which might impact other equipment and component or cause flow blockage. It is important to analyze reactor noise signal for the early detection of potential problem or failure in order to diagnosis reactor integrity in the point of view of safety and plant economics. Detailed design of hardware diagnostic system reactor internal structures using neutron noise(RIDS).

  • PDF

High-Temperature Structural Analysis on the Small-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop (소형가스루프 시험조건에서 소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In order to properly evaluate the high-temperature structural integrity of the small-scale PHE prototype, it is very important to impose a proper constraint condition on its structural analysis model. For this effort, we tried to impose several constraint conditions on the structural analysis model and consequently fixed a proper and effective displacement constraints.

Effect of High Temperature and Pressure Conditions on the Combustion Characteristics of n-butanol and n-heptane Fuel (고온, 고압의 분위기 변화가 n-butanol 및 n-heptane 연료의 연소 특성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • The effect of high ambient temperature and pressure conditions on the combustion performance of n-butanol, n-heptane and its mixing fuel (BH 20) were studied in this work. To reveal this, the closed homogeneous reactor model applied and 1000-1200 K of the initial temperature, 20-30 atm of initial pressure and 1.0 of equivalence ratio were set to numerical analysis. It was found that the results of combustion temperature was increased and the ignition delay was decreased when the ambient conditions were elevated since the combustion reactivity increased at the high ambient conditions. On the contrary, under the low combustion temperature condition, the combustion pressure was more influenced by the ambient temperature in the same ambient conditions. In addition, the total mass and the mass density of tested fuels were influenced by the ambient pressure and temperature. Also, soot generation of mixing fuel was decreased than n-heptane fuel due to the oxygen content of n-butanol fuel.

Experimental investigation of jet pump performance used for high flow amplification in nuclear applications

  • Vimal Kotak;Anil Pathrose;Samiran Sengupta;Sugilal Gopalkrishnan;Sujay Bhattacharya
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3549-3558
    • /
    • 2023
  • The jet pump can be used in a test device of a nuclear reactor for high flow amplification as it reduces inlet flow requirement and thereby size of the process components. In the present work, a miniature jet pump was designed to meet high flow amplification greater than 3. Subsequently, experiments were carried out using a test setup for design validation and performance evaluation of the jet pump for different parameters. It was observed that a minimum pressure of 0.6 bar (g) was required for the secondary fluid inside the jet pump to ensure cavitation free performance at high amplification. Spacing between the nozzle tip and the mixing chamber entry point had significant effect on the performance of the jet pump. Variation in primary flow, temperature and area ratio also affected the performance. It was observed that at high flow amplification, the analytical solution differed significantly from experimental results due to very large velocities encountered in the miniature size jet pump.

ROSA/LSTF test and RELAP5 code analyses on PWR steam generator tube rupture accident with recovery actions

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.981-988
    • /
    • 2018
  • An experiment was performed for the OECD/NEA ROSA-2 Project with the large-scale test facility (LSTF), which simulated a steam generator tube rupture (SGTR) accident due to a double-ended guillotine break of one of steam generator (SG) U-tubes with operator recovery actions in a pressurized water reactor. The relief valve of broken SG opened three times after the start of intact SG secondary-side depressurization as the recovery action. Multi-dimensional phenomena specific to the SGTR accident appeared such as significant thermal stratification in a cold leg in broken loop especially during the operation of high-pressure injection (HPI) system. The RELAP5/MOD3.3 code overpredicted the broken SG secondary-side pressure after the start of the intact SG secondary-side depressurization, and failed to calculate the cold leg fluid temperature in broken loop. The combination of the number of the ruptured SG tubes and the HPI system operation difference was found to significantly affect the primary and SG secondary-side pressures through sensitivity analyses with the RELAP5 code.

CORE DESIGN CONCEPTS FOR HIGH PERFORMANCE LIGHT WATER REACTORS

  • Schulenberg, T.;Starflinger, J.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.249-256
    • /
    • 2007
  • Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modem fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with $380^{\circ}C$ core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around $500^{\circ}C$, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors.

Preparation of FeB by SHS (Self Propagating High Temperature Synthesis) (자전연소합성법에 의한 FeB 분말의 제조)

  • Shin, Chang-Yun;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.418-422
    • /
    • 2008
  • The preparation of FeB by SHS in $B_2O_3-Mg-Fe-Fe_3O_4$ system was investigated in this study. In the preparation of FeB, the effects of the initial pressure of inert gas in reactor, the content of Mg and $Fe_3O_4$ in mixture on the reactivity and reaction products was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 25 atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 25 atm, the optimum composition for the preparation of pure FeB was $1.5B_2O_3$+3.43Mg+ 1.7Fe+$0.1Fe_3O_4$. The FeB synthesized in this condition had an irregular shape and the particle size of $5\;{\mu}m$.