• Title/Summary/Keyword: High Precision Rotor

Search Result 91, Processing Time 0.03 seconds

A Study on High-output MR (Magneto-rheological) Brake for Tension Control (장력제어용 고출력 MR 브레이크)

  • Park, Jung-Ho;Kim, Jin-Gyu;Youn, Dong-Won;Ham, Sang-Yong;Noh, Jong-Ho;Yoo, Jin-San
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1422-1427
    • /
    • 2007
  • MR fluid is a suspension of micrometer-sized magnetizable particles in silicon oil and a functional fluid whose apparent viscosity can be controlled by the applied magnetic field strength. In this paper, a rotary brake using MR fluid called MR brake for tension control of precision machinery such as roll-to-roll printing machinery is presented. First, to obtain the higher performance than conventional powder brake, a MR brake with a modified rotor shape is newly designed and analyzed using FEM. Second, the prototype of MR brake is fabricated with the optimized structural parameters and an experimental apparatus is constructed. Then, basic characteristics of the MR brake are investigated with the different MR fluids. Finally, the validity of the developed MR brake is verified through the comparison with the conventional powder brake.

  • PDF

A Low Cost Switched Reluctance Motor Position Sensing Method Using Reflective Type Photo-sensors (반사형 광센서를 이용한 저가형 SRM 위치검출기법)

  • Kim S. J.;Yoon Y. H.;Jung G. H.;Won C. Y.;Kim Y. R.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.219-223
    • /
    • 2004
  • Since rotor position information is necessary to drive the SRM, absolute-encoder, resolver and incremental encoder is used to detect a rotor position. But, it is not desirable to use a high price encoder and microprocessor under the condition of the simple driving system when precision control is not demanded. In this paper, only using the reflective type two photo-sensors replaces the conventional opto-interrupter and slotted-disk, which not only remove a slotted-disk section but drive three-phase 6/4 pole SRM bidirectionally, Therefore, control circuit can compose common analog device with low price.

  • PDF

SUBOPTIMAL VIBRATION CONTROL OF FLEXIBLE ROBOT BEARING SYSTEM BY USING A MAGNETIC BEARING

  • Lee, Chong-Won;Kim, Jong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.255-259
    • /
    • 1989
  • A suboptimal output feedback controller is designed and applied to a flexible rotor bearing system in order to control the unstable or lilghtly damped vibrations. The reduced order model is the truncated modal equation of the distributed parameter system obtained through the singular perturbation. The instability problem arising from the spillover effects caused by the uncontrolled high frequency modes is prevented through the constrained optimization by incorporating the spillover term into the performance index. The efficiency of the proposed method is demonstrated experimentally with a flexible rotor by using a magnetic bearing.

  • PDF

Conductivity·Filling Rate Analysis for Die-Casting Centrifugal Casting Machine (다이캐스팅형 원심주조기에 대한 충진율·전도율 해석)

  • Lee, Yang-Chang;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2364-2369
    • /
    • 2015
  • In this paper, the optimum RPM was suggested comparing rotor filling rate of RPM through the analysis of rotor's filling rate as studying and developing centrifugal-casting machine's method for high precision rotor in order to increase the related types of business's productivity. The result was similar to other result in industrial site, showing 99.47% of filling rate when rotational speeds are 600 rpm, so it is considered that if this result is conducted with additional research, it will be possible to plan a better process design. Besides, the optimum temperature of compact ladle was examined to produce high quality casting product through the analysis of compact ladle's conductivity. In the case of the heating device's absence using nicrome wire, Al solution solidifies falling drastically into $427^{\circ}C$. However, it is feasible to work over $427^{\circ}C$ which is the melting temperature of aluminium solution when the heating device of nicrome wire is included. It reveals that there is little temperature change.

Radial Performances of Spiral-Grooved Spherical Air Bearings (나선홈을 갖는 반구형 공기 베어링의 반경 방향 성능 측정)

  • Park, Keun-Hyung;Choi, Jeong-Hwan;Choi, Woo-Chon;Kim, Kwon-Hee;Woo, Ki-Myung;Kim, Seung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.23-30
    • /
    • 1999
  • This paper investigates the radial performance of self-acting spiral-grooved air bearing, used to support small high-speed rotating bodies. Repeatable runout, nonrepeatable runout, stiffness and supporting load are selected as the performance. The clearance between rotor and stator, the stator groove depth, and the rotating speed are chosen as three main parameters affecting the performances. Force application and displacement measurement are done in a noncontact manner, in order not to disturb operation: electromagnetic force is applied to the rotor and gap sensors are used to measure the displacement of the rotor. Experimental results show that repeatable runout decreases as speed, groove depth and clearance decrease. Nonrepeatable runout decreases as clearance decreases, and it has a minimum value at $5.5{\mu}m$ of grove depth and a maximum value at speed of 18.000rpm. Stiffness increases as speed increases and clearance decreases, and has a maximum value around $5.5{\mu}m$ of groove depth. The relationship between force and displacement is linear for small displacement, but becomes nonlinear for large displacement. Supporting load is linearly proportional to the stiffness, and it is a maximum value around $4.75{\mu}m$ of clearance.

  • PDF

Design and Fabrication of Coaxial Rotorcraft-typed Micro Air Vehicle for Indoor Surveillance and Reconnaissance (실내감시정찰용 동축반전 헬리콥터형 미세비행체 설계 및 제작)

  • Byun, Young-Seop;Shin, Dong-Hwan;An, Jin-Ung;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1388-1396
    • /
    • 2011
  • This paper is focused on the procedure of the development of a micro air vehicle which has vertical take-off and landing capability for indoor reconnaissance mission. Trade studies on mission feasibility led to the proposal of a coaxial rotorcraft configuration as the platform. The survey to provide a guide for preliminary design were conducted based on commercial off-the-shelf platform, and the rotor performance was estimated by the simple momentum theory. To determine the initial size of the micro air vehicle, the modified conventional fuel balance method was applied to adopt for electric powered vehicle, and the sizing problem was optimized with the sequential quadratic programming method using MATLAB. The designed rotor blades were fabricated with high strength carbon composite material and integrated with the platform. The developed coaxial rotorcraft micro air vehicle shows stable handling quality with manual flight test in indoor situation.

Improved Mutual MRAS Speed Identification Based on Back-EMF

  • Zheng, Hong;Zhao, Jiancheng;Liu, Liangzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.769-774
    • /
    • 2016
  • In the design of sensorless control system for induction motor, high-precision speed estimation is one of the most difficult problems. To solve this problem, the common method is model reference adaptive method (MRAS). MRAS requires accurate motor parameters to estimate rotor speed precisely. However, when motor is running, the variety of temperature and magnetic saturation will lead to the change of motor parameters such as stator resistance and rotor resistance, which will lower the accuracy of the speed estimation. To improve the accuracy and rapidity of speed estimation, this paper analyses the mutual MRAS speed identification based on rotor flux linkage, and proposes an improved mutual MRAS speed identification based on back-EMF. The improved method is verified by Simulink simulation and motor experimental platform based on DSP2812. The results of simulation and experiment indicate that the method proposed by this paper can significantly improve the accuracy of speed identification, and speed up the response of identification.

A Study on the Active Balancing Method for High Speed Spindle System Using Influence Coefficient (영향계수를 이용한 고속 주축시스템의 자동밸런싱 기법에 관한 연구)

  • Kim, Bong-Seok;Kim, Jong-Su;Lee, Su-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.48-53
    • /
    • 2001
  • In order to increase productivity and efficiency, high-speed rotating machines become popular these days. The high-speed rotating machine is likely to vibrate and cause machine failure even though it has small unbalance. Therefore, a balancing technique is studied in this paper. Off-line balancing methods are inadequate to solve unbalance vibration problem occurring in the field due to flexible rotor effect, faster tool change, and shorter spin-up and down, etc. An active balancing is suggested to allow re-balancing of the entire rotating assembly in the machine when a tool is changed. This paper shows how to identify the dynamics of the system using influence coefficient and suggest an active balancing technique based on influence coefficient method for high-speed spindle system.

  • PDF

Development of Rotordynamics Program Based on the 2D Finite Element Method for Flywheel Energy Storage System (2차원 유한요소법을 적용한 플라이휠 에너지 저장 장치 동특성 해석 프로그램 개발)

  • Gu, Dong-Sik;Bae, Yong-Cae;Lee, Wook-Ryun;Kim, Jae-Gu;Kim, Hyo-Jung;Choi, Byeong-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1757-1763
    • /
    • 2010
  • Flywheel energy storage system (FESS) is defined as a high speed rotating flywheel system that can save surplus electric power. The FESS is proposed as an efficient energy storage system because it can accumulate a large amount of energy when it is operated at a high rotating speed and no mechanical problems are encountered. The FESS consists of a shaft, flywheel, motor/generator, bearings, and case. It is difficult to simulate rotor dynamics using common structure simulation programs because these programs are based on the 3D model and complex input rotating conditions. Therefore, in this paper, a program for the FESS based on the 2D FEM was developed. The 2D FEM can model easier than 3D, and it can present the multi-layer rotor with different material each other. Stiffness changing of the shaft caused by shrink fitting of the hub can be inputted to get clear solving results. The results obtained using the program were compared with those obtained using the common programs to determine any errors.

Design of Cone-Shaped Magnetic Bearing Spindle System for High Speed Internal Grinding Machine (내면연삭기 고속 주축용 원추형 자기베어링시스템 설계)

  • Park, Jong-Gwon;No, Seung-Guk;Gyeong, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.213-219
    • /
    • 2002
  • A cone-shaped active magnetic healing spindle system for high speed internal grinding with built-in motor that has 7.5kW power and maximum rotational speed of 50,000 rpm is designed and built. Using cone-shaped AMB(Active Magnetic Bearing) system, the axial rotor dick and magnets of conventional 5-axis actuating design can be eliminated. so this concept of design provides a simple magnetic bearing system. In this paper, the cone-shaped electromagnets are designed by magnetic circuit theory, and a de-coupled direct feedback PID controller is applied to control the coupled magnetic bearings. The designed crone-shaped AMB spindle system is built and constructed with a digital control system, which has TMS320C6702 DSP, 16 bit AD/DA, switching power amplifier and gap sensors. As the AMB system provides high damping ratio eliminating overshoot and resonance speed, this spindle runs up to 40,000 rpm stably with about 5${\mu}{\textrm}{m}$ of runout.