• Title/Summary/Keyword: High Precision Rotor

Search Result 91, Processing Time 0.016 seconds

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.