• Title/Summary/Keyword: High Precision Lathe

Search Result 60, Processing Time 0.026 seconds

Develvopment of Infeed Grinding Machine and Its Effects on Spherical Surface Grinding (구면 전용 Infeed 연삭기의 개발과 성능평가)

  • 이상직;정해도;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1028-1032
    • /
    • 1995
  • This paper describes the manufacture of spherical and aspherical surface on glass, superalloy and ceramic components. The rotationally symmetricallenses, and the ceramic or superalloy molds with spherical shapes are mainly generated by cutting processes on CNC lathe machine or 4,5 axis CNC machining centers. Recently, spherical shape parts require more precise and efficent machining technologies for wide material range such as optical lens of the lithography device in semiconductor manufacturing processes or the high precision mold machining of anti-chemical, anti-wear materials. In this paper, we introduce a newly developed infeed grinding machine with metal with metal bonded cup type wheel and its effects on spherical surface grinding.

  • PDF

A study on 5-axis Milling Machine for Micro System Manufacturing (마이크로 시스템 구현을 위한 5축 가공기에 관한 연구)

  • 방영봉;이경민;오승률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.585-588
    • /
    • 2003
  • As the advance in technology requires micro mechanical systems, the production methods for micro parts are of a great interest of many researchers. Although MEMS is one of the most popular methods. it can only produce 2D microstructures. The micro manufacturing with micro-mill and micro-lathe has a great potential for producing arbitrary 3D shapes and are being researched. In this paper, a PC based 5-axis milling machine with high precision was developed. To evaluate the machine performance, micro ribs and micro columns were machined. The machining experiments of micro impeller and micro turbine blade confirmed the possibility of micro system manufacturing by using the developed milling machine.

  • PDF

채터 진동에서의 동적 절삭력의 모델링과 안정성 해석

  • 강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.28-32
    • /
    • 1992
  • The elimination of chatter vibration is necessary to improve the precision and the productivity of the cutting operation. A new mathematical model of chatter vibration is pressented in order to predict dynamic cutting force from static cutting data. Chatter vibration occurring in the tool structure of lathe is treated theoretically, considering the regenerative effect. The Stability Analysis is carried out by a two degress of freedom system. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coeccicient which can be determined from the cutting mechanics. The static cutting coefficient controls high speed chatter stability, while the dynamic cutting coefficient dominates low chatter stability. From above considerations, the cirtical width of cut which governs chatter stability was obtained.

Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle (엔드밀 가공 시 여유각을 고려한 가공특성)

  • 박정남;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

자동선반을 위한 공작물 장탈착로봇의 개발

  • 고경철;김용일;권영두;정종기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.364-368
    • /
    • 1992
  • The conventional loading process of workpieces for a CNC lathe is performaed either by human or by a general robot. It is not suitable for a general robot to load workpieces because of high price and inefficiency. Starting from the description of the environment around CNC lathes and the analysis ofloading process, we have developed the task-oriented loading manipulator. The characteristics of a loading manipulator are the following: to load/unload heavy workpieces, to decrease the whole porcess time. The air-chuck to load heavy workpiece has high clamping force and light weight. A loading manipulator has accomplished both the integration of independent automation techniques and cost-down effect of product. A loading manupulator developed in this project has been designed for general loading process. The loading manipulator is capable of carrying heavy payload with respect to weight of robot in short cycle time.

Real-time Motion Error Time and the Thermal Error Compensation of Ultra Precision Lathe (초정밀 가공기의 실시간 운동오차 및 열변형오차 보상)

  • Kwac Lee-Ku;Kim Hong-Gun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.44-48
    • /
    • 2006
  • Recently, demand the ultra precision product which is increasing rapidly is used extensively frontier industry field such as semi-conductor, computer, aerospace, precision machine. Ultra precision processing is the portion that is very needed to NT in the field of mechanical engineering. The latest date, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts those are connected with these industrial fields. Specially, require motion accuracy of high resolution of nm order in stroke of hundreds millimeters according as diameter of processing object great and processing accuracy rises. In this case ,the response speed absolute delay because inertial mass of moving part is very large. Therefore, real time motion error compensation becomes very hardly. In this paper, we used ultra precision cutting unit(UPCU) to cope such problem. a UPCU is designed and tested to obtain sub-micrometer from accuracy in diamond turning of flat surfaces. The thermal growth spindle error is compensated for real time using a UPCU driven by piezoelectric actuator along with a laser encoder displacement sensor.

Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient (유연도 영향계수법을 이용한 접촉 결합부의 모델링)

  • 오제택;조성욱;이규봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.814-819
    • /
    • 2003
  • Machine tool design concepts have evolved towards high efficiency, accurate precision. high structural integrity, and multi-functional systems. Like many other structures, machine tools are also composed of many parts. When these parts are assembled, many kinds of joints are used. In the finite element analysis of these assembled structures, most joints are commonly considered as rigid joints. But, to get the more accurate solution, we need to model these joints in a appropriate manner. In this study, rational dynamic modeling and analysis method for complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method. the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model can be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models. which demonstrated the practical applicability of the proposed method.

  • PDF

Improvement of the Lathe Tool-post for the Suppression of Chatter. (채터 발생억제를 위한 선박 공구대의 개선에 관한 연구)

  • Jeong, Jun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 1990
  • High speed and heavy cutting performed for improving the surface quality and productivity, are often prevented due to chatter phenomena. Chatter is a violent relative vibration between workpiece and tool in machining of metals, and is an important limiting factor of production rate and surface quality, and reduces the tool life and the dynamic performance of machine tool itself. In this study, in order to suppress the chatter, a modified tool-post combined with the spring and damper was designed and used in the actual cutting test. The results of this study are summerized as follows; The spring and damper adopted in the modified tool-post have the suppressing effects of chatter, and there exists an optimum combination between spring constant and damping ratio.

  • PDF

Cutting Force Regulation in Turning Using Sliding Mode Control (슬라이딩 모드 제어기를 응용한 선삭공정 절삭력 제어)

  • 박영빈;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.605-609
    • /
    • 1996
  • Continuous sliding mode control is applied to turning process for cutting force regulation. The highest feedrate compatible with the allowable cutting force is applied in rough cutting process such that maximum productivity is ensured and tool breakage is avoided. The programmed feedrate is overridden after the control algorithm is carried out. However, most CNC lathe manufacturers offer limited number of data bits far feedrate override, thus resulting in nonlinear behavior of the machine tools. Such nonlinearity brings “quantized” effect, and the optimal faedrate is rounded off before being fed into the CNC system. To compensate for this problem, continuous sliding mode control is applied. Conventional switching control law at a sliding surface is replaced by a smooth control interpolation in a selected boundary layer to avoid the excitation of high-frequency dynamics. Simulation results are presented in comparison with those obtained by applying adaptive control.

  • PDF

A Study on the Magnetically Suspended Spindle with 16-pole Radial Magnets (16 극의 반경방향 전자석을 갖는 자기부상 주축계 연구)

  • Park, Jong-Kweon;Ro, Seung-Kook;Kyung, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.203-212
    • /
    • 2002
  • Active magnetic hearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. This paper describes a design and test of an active magnetic bearing system with 16-pole radial magnets. The spindle is originally designed for a CNC lathe and driven by outer motor with 5.5 kW power and maximum speed 10,000 rpm. Considering static load condition and geometric restrictions, radial magnet is designed 16-pole type for smaller outer diameter of the spindle system. Dynamic system characteristics such as natural frequency, critical speed, stiffness, damping and system stabilities are simulated with a rigid rotor model including direct feedback controller. The designed spindle system is realized with digital PIDD controller to compensate phase lag of PWM amplifier and magnet coils. With levitation and step response experiment the control system characteristics are tested, and the spindle is rotated up to 10,000 rpm stab1y.