• 제목/요약/키워드: High Power Laser

검색결과 902건 처리시간 0.027초

펄스 Nd:YAG 레이저에 의한 브라운관 부품의 용접시 빔의 출력특성과 광학변수 (Characteristics of Output Energy and Optical Parameters in Welding of Braun Tubes by Pulsed Nd:YAG Laser)

  • 김종도;하승협
    • 한국레이저가공학회지
    • /
    • 제8권1호
    • /
    • pp.27-37
    • /
    • 2005
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two poles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets.

  • PDF

AR Coating에 따른 고출력 반도체 레이저의 특성변화 (Characteristic ependences of High Power Semiconductor Laser on AR Coating)

  • 오윤경;곽계달
    • 전자공학회논문지A
    • /
    • 제32A권11호
    • /
    • pp.29-34
    • /
    • 1995
  • Mirror coating is applied to laser facets to improve properties of edge emitting laser diodes. In this experiment, InGaAsP/GaAs high power laser diodes were studied with respect to different degrees of anti-reflective coating. Sputterred $Al_{2}$O$_{3}$ was used as the coating material and the HR coating was kept constant at 90%. Threshold current density, differential quantum efficiency, emission wavelength and the operating current at 500mW were measured for a range of AR coating and compared with theoretically calculated values; that showed good agreements. Precise wavelength control is important for laser diodes for solid state pumping because of small absorption bandwidth. In addition, since these lasers operate under CW condition, a lowest possible operating current for a given power is desired in order to minimize the heat produced. From the results of this experiment, we were able to obtain a optimum range of AR coatings for minimum operating current. The wavelength can be varied up to 4nm within this range.

  • PDF

고속주축 모니터링용 광파이버 변위센서의 레이저 다이오드 출력에 따른 성능평가 (Performance Evaluation according to Optical Power of Laser Diode of Optical Fiber Displacement Sensor for Monitoring High Speed Spindle.)

  • 박찬규;신우철;홍준희;이동주
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.376-380
    • /
    • 2004
  • This paper is to develop an optical ruer displacement sensor for monitoring high speed spindle. Proper magnitude of optical power as well as amplification of output signal are necessary to improve sensitivity of the sensor. In this paper, to meet the need of improvement of the sensor resolution, we choose proper optical power and amplification level through speculating on optical power of a laser diode.

  • PDF

저탄소강의 고출력 $CO_2$ 레이저 빔 용접 (High power $CO_2$ laser beam welding for low carbon steels)

  • 김재도
    • Journal of Welding and Joining
    • /
    • 제7권4호
    • /
    • pp.12-21
    • /
    • 1989
  • Laser beam welding parameters have experimentally investigated, using a continuous wave 3kW $CO_2$ laser with the various travel speeds, beam mode and laser beam power in low carbon steels. An optimum position of focus and the effect of shielding gas on penetration depth with varying the flow range of 0.5 to 5.1m/min have been combined to investigate the effect of laser power and travel speed on penetration depth and bead width. It is found that the optimum position of focus in 3kW class laser is 0.5 to 1.5mm below the surface of the material. The flow rate of shielding gas affects the penetration depth and He is more effective than Ar. The penetration depth in laser welds of low carbon steels is between two and four times of the bead width. Laser beam welding of butt joints in 2mm thick carbon steel has been carried out to establish a weldability lobe. The lobe indicating acceptable welding conditions is introduced.

  • PDF

High-power fiber laser cutting parameter optimization for nuclear Decommissioning

  • Lopez, Ana Beatriz;Assuncao, Eurico;Quintino, Luisa;Blackburn, Jonathan;Khan, Ali
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.865-872
    • /
    • 2017
  • For more than 10 years, the laser process has been studied for dismantling work; however, relatively few research works have addressed the effect of high-power fiber laser cutting for thick sections. Since in the nuclear sector, a significant quantity of thick material is required to be cut, this study aims to improve the reliability of laser cutting for such work and indicates guidelines to optimize the cutting procedure, in particular, nozzle combinations (standoff distance and focus position), to minimize waste material. The results obtained show the performance levels that can be reached with 10 kW fiber lasers, using which it is possible to obtain narrower kerfs than those found in published results obtained with other lasers. Nonetheless, fiber lasers appear to show the same effects as those of $CO_2$ and ND:YAG lasers. Thus, the main factor that affects the kerf width is the focal position, which means that minimum laser spot diameters are advised for smaller kerf widths.

고출력 레이저 어블레이션에 의한 실리콘 가공시 발생하는 상폭발 현상에 관한 연구 (Study on the phase explosion phenomena during high power laser ablation of silicon)

  • 정성호
    • 한국레이저가공학회지
    • /
    • 제3권3호
    • /
    • pp.39-45
    • /
    • 2000
  • The volume and depth of the craters produced on silicon samples during high power laser ablation show a strong nonlinear change as the laser irradiance increases across a threshold value, approximately 2.2$\times$10$\^$10/ W/㎠. Time-resolved shadowgraph images of the ablation plume reveal the ejection of large particulates from the sample for laser irradiance above the threshold, with a time delay of about 300-400 ㎱. The numerically estimated thickness of the superheated liquid layer, considering the transformation of liquid metal into liquid dielectric near the critical state, agrees with the measured agrees with crater depths. It is suggested that a phase explosion of the deep superheated liquid layer near the critical state is responsible for the measured sudden increase of crater volume and the ejection of large particulates.

  • PDF

Immediate effect of Nd:YAG laser monotherapy on subgingival periodontal pathogens: a pilot clinical study

  • McCawley, Thomas K.;McCawley, Mark N.;Rams, Thomas E.
    • Journal of Periodontal and Implant Science
    • /
    • 제52권1호
    • /
    • pp.77-87
    • /
    • 2022
  • Purpose: This pilot study assessed the immediate in vivo effect of high peak pulse power neodymium-doped yttrium aluminum garnet (Nd:YAG) laser monotherapy on selected red/orange complex periodontal pathogens in deep human periodontal pockets. Methods: Twelve adults with severe periodontitis were treated with the Laser-Assisted New Attachment Procedure (LANAP®) surgical protocol, wherein a free-running, digitally pulsed, Nd:YAG dental laser was used as the initial therapeutic step before mechanical root debridement. Using a flexible optical fiber in a handpiece, Nd:YAG laser energy, at a density of 196 J/cm2 and a high peak pulse power of 1,333 W/pulse, was directed parallel to untreated tooth root surfaces in sequential coronal-apical passes to clinical periodontal probing depths, for a total applied energy dose of approximately 8-12 joules per millimeter of periodontal probing depth at each periodontal site. Subgingival biofilm specimens were collected from each patient before and immediately after Nd:YAG laser monotherapy from periodontal pockets exhibiting ≥6 mm probing depths and bleeding on probing. Selected red/orange complex periodontal pathogens (Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia/nigrescens, Fusobacterium nucleatum, Parvimonas micra, and Campylobacter species) were quantified in the subgingival samples using established anaerobic culture techniques. Results: All immediate post-treatment subgingival biofilm specimens continued to yield microbial growth after Nd:YAG laser monotherapy. The mean levels of total cultivable red/orange complex periodontal pathogens per patient significantly decreased from 12.0% pretreatment to 4.9% (a 59.2% decrease) immediately after Nd:YAG laser monotherapy, with 3 (25%) patients rendered culture-negative for all evaluated red/orange complex periodontal pathogens. Conclusions: High peak pulse power Nd:YAG laser monotherapy, used as the initial step in the LANAP® surgical protocol on mature subgingival biofilms, immediately induced significant reductions of nearly 60% in the mean total cultivable red/orange complex periodontal pathogen proportions per patient prior to mechanical root instrumentation and the rest of the LANAP® surgical protocol.

Fiber Laser Welding in the Car Body Shop - Laser Seam Stepper versus Remote Laser Welding -

  • Kessler, Berthold
    • Journal of Welding and Joining
    • /
    • 제31권4호
    • /
    • pp.17-22
    • /
    • 2013
  • The excellent beam quality of high power fiber lasers are commonly used for remote welding applications in body job applications. The Welding speed and productivity is unmatched with any other welding technology including resistance spot welding or traditional laser welding. High tooling cost for clamping and bulky safety enclosures are obstacles which are limiting the use. With the newly developed Laser stitch welding gun we have an integrated clamping in the process tool and the laser welding is shielded in a way that no external enclosure is needed. Operation of this laser welding gun is comparable with resistance spot welding but 2-times faster. Laser stitch welding is faster than spot welding and slower than remote welding. It is a laser welding tool with all the laser benefits like welding of short flanges, weld ability of Ultra High Strength steel, 3 layers welding and Aluminium welding. Together with low energy consumption and minimum operation cost of IPG fiber laser it is a new and sharp tool for economic car body assembly.

백색 레이저 조명용 Y3Al5O12:Ce3+,Pr3+ 단결정 특성 (Properties of Y3Al5O12:Ce3+,Pr3+ Single Crystal for White Laser Lightings)

  • 강태욱;임석규;김종수;이봉
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.37-41
    • /
    • 2018
  • $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was prepared by floating zone method. single crystal was confirmed to have a Ia-3d (230) space group of cubic structure and showed regular morphology. The optical properties, single crystal exhibited a emission band from green, yellow wide wavelength and 610nm, 640nm red wavelength vicinity. The luminance maintenance rate was decreased by phonon with increasing temperature, but high luminance is maintained more than powder phosphor. In addition, $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was applied to a high power blue laser diode, we implemented high power white laser lightings. and it was confirmed that thermal properties over time, due to the effective heat transfer of complete crystal structure. We confirmed that excellent radiant heat properties than powder phosphor was applied to a high power white laser diode.