• 제목/요약/키워드: High Power

검색결과 23,030건 처리시간 0.048초

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

A High Performance Three-Phase Telecom Supply Incorporating a HF Switched Mode Rectifier with a Phase Shifted PWM Controller

  • Shahani, Arushi;Singh, Bhim;Bhuvaneshwari, G.
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.219-227
    • /
    • 2010
  • Telecom supplies need to conform to low Total Harmonic Distortion (THD) and high Power Factor (PF) as per IEC 61000-3-2 and IEEE 519-1992 standards. These high rating power supplies use a three phase utility in which low THD and high PF are realized via various passive and active wave shaping schemes. In this paper, a new design for three phase telecom power supplies is presented with circuit parameter values optimized for high performance in terms of a low THD, high PF, low ripple and high line and load regulation using a suitable combination of various strategies. The performance of the power supply is validated by extensive simulations.

광복합 고압지중전력케이블의 개발에 관한 연구 (A Study on the development of optical fiber incorporated high-voltage underground power cable)

  • 류재규;유성종;전승익;최봉남;이영익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1828-1830
    • /
    • 1996
  • In this study, We developed the optical fiber incorporated high-voltage underground power cable which is combined optical fibers with conventional high-voltage underground power cable. Optical-Unit that optical fiber is inserted in stainless tube is tested, and we got good results enough to safe optical fibers. Also we put the optical fiber incorporated high-voltage underground power cable to the test of electrical characteristics and optical characteristics, we knew that the electrical characteristics were the same characteristics as conventional high-voltage underground power cable and the transmission loss change was almost zero.

  • PDF

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

차세대 GaN RF 전력증폭 소자 및 집적회로 기술 동향 (Technical Trends in Next-Generation GaN RF Power Devices and Integrated Circuits)

  • 이상흥;임종원;강동민;백용순
    • 전자통신동향분석
    • /
    • 제34권5호
    • /
    • pp.71-80
    • /
    • 2019
  • Gallium nitride (GaN) can be used in high-voltage, high-power-density/-power, and high-speed devices owing to its characteristics of wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. In this study, we investigate the technology trends for X-/Ku-band GaN RF power devices and MMIC power amplifiers, focusing on gate-length scaling, channel structure, and power density for GaN RF power devices and output power level and output power density for GaN MMIC power amplifiers. Additionally, we review the technology trends in gallium arsenide (GaAs) RF power devices and MMIC power amplifiers and analyze the technology trends in RF power devices and MMIC power amplifiers based on both GaAs and GaN. Furthermore, we discuss the current direction of national research by examining the national and international technology trends with respect to X-/Ku-band power devices and MMIC power amplifiers.

Dynamic Load Profile 조건의 전원 장치에 있어서 계통 Peak Power 제한/보상 전력 회로 (Grid Peak Power Limiting / Compensation Power Circuit for Power Unit under Dynamic Load Profile Conditions)

  • 정희성;박도일;이용휘;이창현;노정욱
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.376-383
    • /
    • 2022
  • The improved performance of computer parts, such as graphic card, CPU, and main board, has led to the need for power supplies with a high power output. The dynamic load profile rapidly changes the usage of power consumption depending on load operations, such as PC power and air conditioner. Under dynamic load profile conditions, power consumption can be classified into maximum, normal, and standby power. Several problems arise in the case of maximum power. Peak power is generated at the system power source in the maximum-power situation. Frequent generation of peak power can cause high-frequency problems and reduce the life of high-pressure parts (especially high-pressure capacitors). For example, when a plurality of PCs are used, system overload occurs due to peak power generation and causes problems, such as power failure and increase in electricity bills due to exceeded contract power. To solve this problem, a system peak power limit/compensation power circuit is proposed for a power supply under dynamic load profile conditions. The proposed circuit detects the system current to determine the power situation of the load. When the system current is higher than the set level, the circuit recognizes that the system current generates peak power and compensates for the load power through a converter using a super capacitor as the power source. Thus, the peak power of loads with a dynamic load profile is limited and compensated for, and problems, such as high-frequency issues, are solved. In addition, the life of high-pressure parts is increased.

무선전력전송용 게이트 및 드레인 조절 회로를 이용한 고이득 고효율 전력증폭기 (High gain and High Efficiency Power Amplifier Using Controlling Gate and Drain Bias Circuit for WPT)

  • 이성제;서철헌
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.52-56
    • /
    • 2014
  • 본 논문은 고효율 전력증폭기는 무선전력전송을 위한 게이트와 드레인 바이어스 조절 회로를 사용하여 설계하였다. 이 조절 회로는 PAE (Power Added Efficiency)를 개선하기 위해 사용되었다. 게이트와 드레인 바이어스 조절 회로는 directional coupler, power detector, and operational amplifier로 구성되어있다. 구동증폭기를 사용하여 고이득 2단 증폭기는 전력증폭기의 낮은 입력단에 사용되었다. 게이트와 드레인 바이어스 조절회로를 사용하여 제안된 전력증폭기는 낮은 전력에서 높은 효율성을 가질 수 있다. PAE는 80.5%까지 향상되었고 출력전력은 40.17dBm이다.

고전압 입력용 SMPS의 고효율 전략 (High Efficiency Strategy of High Input Voltage SMPS)

  • 우동영;박성미;박성준
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.365-371
    • /
    • 2019
  • Recently, the demonstration and research on the power transmission using high voltage DC such as HVDC(High Voltage DC), Smart Grid, DC transmission and distribution have been actively conducted. In order to control the power converter in high-voltage DC power transmission system, SMPS(Switching Modulation Power Supply) for power converter control using high-voltage DC input is essential. However, the demand for high-pressure SMPS is still low, so the development is not enough. In the low-output SMPS using the high-voltage input, it is difficult to achieve high efficiency due to the switching transient loss especially at light load. In this paper, we propose a new switching scheme for high power SMPS control for low output power. The proposed method can provide better efficiency increase effect in the light load region compared to the existing PWM method. To verify the feasibility of the proposed method, a 40 W SMPS for HVDC MMC(Modulation Multi-level Converter) was designed and verified by simulation.

단위 역률을 갖는 대용량 하이브리드 멀티레벨 PWM 정류기 (High Power Hybrid Multilevel PWM Rectifier with Unity Power Factor)

  • 최남섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1187-1189
    • /
    • 2000
  • This paper presents a high power-hybrid multilevel PWM rectifier with unity power factor. The features and advantages of the proposed PWM rectifier can be summarized as follows; 1) It realizes the high power high voltage AC/DC power conversion. 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained.

  • PDF

High Power Factor Three Phase Rectifier for High Power Density AC/DC Conversion Applications

  • Cho, J.G.;Jeong, C.Y.;Baek, J.W.;Song, D.I.;Yoo, D.W.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.648-653
    • /
    • 1998
  • The conventional three-phase rectifier with bulky LC output filter has been widely used in the industry because of its distinctive advantages over the active power factor correction rectifier such as simple circuit, high reliability, and low cost. Over than 0.9 power factor can be achieved, which is acceptable in most of industry applications. This rectifier, however, is not easy to use for high power density applications since the LC filter is bulky and heavy. To solve this problem, a new simple rectifier is presented in this paper. By eliminating the bulky LC filter from the conventional diode rectifier without losing most of the advantages of the conventional rectifier, very high power density power conversion with high power factor can be achieved. Operation principle and design considerations are illustrated and verified by Pspice simulation and experimental results from a prototype of 3.3 kW rectifier followed by 100KHz zero voltage switching full bridge PWM converter

  • PDF