• Title/Summary/Keyword: High Performance Concrete

Search Result 2,192, Processing Time 0.033 seconds

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.

Examination of Lateral Torsional Bucling Strength by Increasing the Warping Strength of I-Section Plate Girder with Concrete Filled Half Pipe Stiffener (콘크리트 충전 반원기둥보강재가 적용된 플레이트 거더의 뒤틀림 강도)

  • Cheon, Jinuk;Lee, Senghoo;Baek, Seungcheol;Kim, Sunhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.577-585
    • /
    • 2023
  • Lateral torsional buckling causessafety accidentssuch as collapse accidents during erection. Therefore, anaccurate safety designshould be conducted. Lateral torsional buckling canbe prevented by reinforcing the end orreducing the unbraced length. The method ofreducing the unbraced length by installing a crossframe has high material and installation costs and low maintenance performance.In addition, structuralsafety may be deteriorated due to cracks. The end reinforcement method using Concrete Filled Half Pipe Stiffeneris a method ofreinforcing the end of a plate girder using a stiffenerin the form of a semi-circular column. This method increasesthewarping strength ofthe girder and increasesthe lateral torsional buckling strength.In thisstudy, the effect ofincreasing the warping strengthof plate girders with concrete filled half pipe stiffeners was confirmed. To verify the effect, the results ofthe designequationand the finite element analysis were compared and verified through a experiment. As a result, the plate girderwithCFHPS increased thewarping strengthand confirmed that the lateral torsional buckling strength was increased.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

Prestressing Loss Management for PSC Girder Tendon Based on EM Sensing (EM센서를 활용한 PSC 텐던 긴장력 손실 관리)

  • Kim, Junkyeong;Park, Jooyoung;Zhang, Aoqi;Lee, Hwanwoo;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.369-374
    • /
    • 2015
  • In this paper, an EM sensing based prestressing force estimation method is proposed, in which it can estimate tensile force of PS tendon for PSC girder. The PSC girder has more improved performance than the general concrete girder by introducing the prestressing to the concrete. Thus the PSC girder bridge is widely constructed due to its high performance and low cost. However, the prestressing force has not been managed nevertheless it is major factor for the maintenance of the PSC girder bridge. The prestressing force was just measured during construction using jacking device and after that, it can not be managed. For this reason, this paper proposes a tensile force estimation method of PS tendon based on EM sensor. The permeability of ferroelectric material is changed according to the induced stress to the material, in which it can be measured using EM sensor. To measure the permeability of PS tendon, the EM sensor was fabricated and verified by performing the MTS test. The test was performed using 7-wire steel tendon under the 0, 40, 80, 120, 160, 200 KN of tensile force. The permeability of PS tendon was gradually decreased according to the increasement of tensile force. The regression method was used to find the relation between permeability and stress. As a result, the permeability has linear relation with the tensile force of PS tendon and the pre-stressing force can be estimated by the derived estimation equation.

Evaluating Shrinkage Characteristic of Ternary Grout for PSC Bridge Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 PSC 교량용 3성분계 그라우트의 수축특성 평가)

  • Yuan, Tian-Feng;An, Gi-Hong;Ryu, Gum-Sung;Koh, Kyoung-Taek;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 2016
  • This paper reports on analyzing the free and restrained shrinkage characteristic of ternary grout used cementitious admixture. In this study, the cementitious admixture was used such as fly ash, ziricania silica fume by combination of expansive additive (a, b) and shrinkage reducing agent. And a number of basic performance tests were conducted to investigate bleeding, volume change, fluidity and compressive strength behavior. According to the results, within appropriate mixing ratio, even the fluidity is not influenced by expansive additive and shrinkage reducing agent, the resistant properties of bleeding, volume change, shrinkage and compressive strength are increased. Comparing with plain grout, the free shrinkage reduced by a minimum of 29% which specimens are added expansive additive and shrinkage reducing agent. The combination of expansive additive a and shrinkage reducing agent is the most effective for reduction of shrinkage. And increasing the mixing ratio of expansive additive and shrinkage reducing agent extended cracking time. Nevertheless, combined addition of expansive additive a 2.0% and shrinkage reducing agent 0.50% has best shrinkage reduction behavior and not appeared cracking. From the above, the mixing ratio of 2.0% of expansive additive a and 0.50% of shrinkage reducing agent is high performance ternary grout for PSC bridge.

Deep learning based crack detection from tunnel cement concrete lining (딥러닝 기반 터널 콘크리트 라이닝 균열 탐지)

  • Bae, Soohyeon;Ham, Sangwoo;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.583-598
    • /
    • 2022
  • As human-based tunnel inspections are affected by the subjective judgment of the inspector, making continuous history management difficult. There is a lot of deep learning-based automatic crack detection research recently. However, the large public crack datasets used in most studies differ significantly from those in tunnels. Also, additional work is required to build sophisticated crack labels in current tunnel evaluation. Therefore, we present a method to improve crack detection performance by inputting existing datasets into a deep learning model. We evaluate and compare the performance of deep learning models trained by combining existing tunnel datasets, high-quality tunnel datasets, and public crack datasets. As a result, DeepLabv3+ with Cross-Entropy loss function performed best when trained on both public datasets, patchwise classification, and oversampled tunnel datasets. In the future, we expect to contribute to establishing a plan to efficiently utilize the tunnel image acquisition system's data for deep learning model learning.

Fragility functions for eccentrically braced steel frame structures

  • O'Reilly, Gerard J.;Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.367-388
    • /
    • 2016
  • Eccentrically braced frames (EBFs) represent an attractive lateral load resisting steel system to be used in areas of high seismicity. In order to assess the likely damage for a given intensity of ground shaking, fragility functions can be used to identify the probability of exceeding a certain damage limit-state, given a certain response of a structure. This paper focuses on developing a set of fragility functions for EBF structures, considering that damage can be directly linked to the interstorey drift demand at each storey. This is done by performing a Monte Carlo Simulation of an analytical expression for the drift capacity of an EBF, where each term of the expression relies on either experimental testing results or mechanics-based reasoning. The analysis provides a set of fragility functions that can be used for three damage limit-states: concrete slab repair, damage requiring heat straightening of the link and damage requiring link replacement. Depending on the level of detail known about the EBF structure, in terms of its link section size, link length and storey number within a structure, the resulting fragility function can be refined and its associated dispersion reduced. This is done by using an analytical expression to estimate the median value of interstorey drift, which can be used in conjunction with an informed assumption of dispersion, or alternatively by using a MATLAB based tool that calculates the median and dispersion for each damage limit-state for a given set of user specified inputs about the EBF. However, a set of general fragility functions is also provided to enable quick assessment of the seismic performance of EBF structures at a regional scale.

Design of Fiber Reinforced Cement Matrix Composite Produced with Limestone Powder and Flexural Performance of Structural Members (석회석 미분말을 혼입한 시멘트계 매트릭스 섬유복합재료의 설계 및 구조부재의 휨성능)

  • Hyun, Jung-Hwan;Kim, Yun-Yong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.328-335
    • /
    • 2016
  • The purpose of this study is to develop fiber reinforced cement matrix composite (ECC) produced with limestone powder in order to achieve high ductility of the composite, and to evaluate flexural performance of structural members made with ECC. Four kinds of mixture proportions were determined on the basis of the micromechanics and a steady state cracking theory considering the matrix fracture toughness and fiber-matrix interfacial characteristics. The mechanical properties of ECC, represented by strain-hardening behavior in uniaxial tension, were investigated. Also, strength property of the composite was experimentally evaluated. Two structural members made with ECC were produced and tested. Test results were compared with those of conventional concrete structural members. Increased limestone powder contents of ECC provides higher ductility of the composites while generally resulting in a lower strength property. ECC structural members exhibited higher flexural ductility, higher flexural load-carrying capacity and tighter crack width compared to conventional structural members.

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

An Experimental Study on the Reinforcement of Low-Rise RC Structure for Seismic Performance (저층 RC 건물의 내진성능 보강에 관한 실험적 연구)

  • Kim, Dongbaek;Lee, Byeonghoon;Kwon, Soondong;Lee, Induk
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • Nowaday, most of the low-rise concrete structures which have less than five stories were built before the intensified seismic code was established 2005. According to the fact that our country is not a safety zone ay more, studies are need to reinforce the seismic performance of that structures. The basic frame of low-rise structure are consist of beams and columns with partition walls, therefore that are very weak about secondary wave of earthquake because of the high stiffness. The partition wall are consist of open channel for sunlight or ventilation and intermediate wall. The intermediate walls will enhance the stiffness of columns, but will cause shear failure with short column effects because of the reduced effective depth. But we don't have studies and adequate design code for partition wall effects, therefore some more studies are need for these facts.