• Title/Summary/Keyword: High Performance Concrete

Search Result 2,192, Processing Time 0.029 seconds

Mechanical and Electrical Characteristics of Concrete Members Enlarged with Self-Sensing Cementitious Materials for Repair (자기감지형 보수재로 단면증타된 콘크리트 부재의 역학 및 전기적 특성 )

  • Gun-Cheol Lee;Geon-Woo Im;Chang-Min Lee;Sung-Won Hong;Young-Min Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.139-146
    • /
    • 2023
  • In this study, compressive strength and adhesion strength were measured as repair materials to evaluate the mechanical and electrical properties of compression and shear specimens with self-sensing repair materials. As a result of the experiment, the strength improvement rate of the compression test specimen was higher than the section enlargement area ratio, but the shear test specimen did not show an improvement in strength as much as the section enlargement area ratio. Compression experiments under load showed high correlation between FCR-Strain and FCR-Stress, confirming self-sensing performance. However, the shear test did not show as much correlation as the compression test. Accordingly, it is judged that the self-sensing repair material is suitable for the compression member on which the compression load acts in the building.

Experimental Study on RC Frame Structures with Non-Seismic Details Strengthened by Externally-Anchored Precast Wall-Panel Method (EPWM) (외부 앵커압착형 프리캐스트 벽체로 보강된 비내진 상세를 갖는 철근콘크리트 골조에 대한 실험적 연구)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Kwon, Yong-Keun;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • The infill-wall strengthening method has been widely used for the seismic performance enhancement of the conventional reinforced concrete (RC) frame structures with non-seismic detail, which is one of the promising techniques to secure the high resisting capacity against lateral forces induced by earthquake. During the application of the infill-wall strengthening method, however, it often restricts the use of the structure. In addition, it is difficult to cast the connection part between the wall and the frame, and also difficult to ensure the shear resistance performances along the connection. In this study, an advanced strengthening method using the externally-anchored precast wall-panel (EPCW) was proposed to overcome the disadvantages of the conventional infill-wall strengthening method. The one-third scaled four RC frame specimens were fabricated, and the cyclic loading tests were conducted to verify the EPCW strengthening method. The test results showed that the strength, lateral stiffness, energy dissipation capacity of the RC frame structures strengthened by the proposed EPCW method were significantly improved compared to the control test specimen.

Development of Switching and Heating Devices in Embedded Rack Track for Environmental-friendly Mountain Railway (친환경 산악철도 매립형 궤도의 선로전환기 및 히팅장치 개발)

  • Seo, Sung-il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.503-510
    • /
    • 2020
  • Eco-friendly mountain railways operate on concrete rack tracks embedded on existing sharp curved and steep roads to preserve the environment in mountainous areas. Owing to the narrow roads, single lines are inevitable, and many branches are required. In branches, previous switchers and heating devices cannot be applied, because of the limited spacing for the rack and the slow removal of thick ice. To solve these problems, a switch and a heating device have been developed. The switcher changes the line by moving the block of concrete track with hydraulic actuators. The lack of discontinuity reduces the derailment risk and makes locking simple. The heating device uses high frequency induction coils to increase the efficiency and melt the thick ice rapidly. The prototype switcher and heating device were produced and operated to prove their performance. The heating device yielded a 10 times greater efficiency than the previous one. The switcher and heating device are the essential core technologies for the operation of mountain trams in winter and contribute to the spread of mountain railways to domestic or foreign resort areas by enhancing safety and efficiency. In addition, they can provide transportation rights to local residents in poor winter traffic, and bring about tourism and local economic growth.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Rheological Evaluation of Blast Furnace Slag Cement Paster over Setting Time (고로슬래그 혼합 시멘트 페이스트의 응결시간 경과에 따른 레올로지 특성)

  • Cho, Bong-Suk;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.505-512
    • /
    • 2016
  • Even though high performance concrete was developed according to the trend of bigger and higher of reinforced concrete building, the rheological evaluations such as viscosity, yield stress are not enough to use as input data to accomplish the numerical analysis for the construction design. So there are many problems in the harden concrete such as poor compaction, rock pocket and crack, etc. in the field. In this study, consistency curves were measured by the viscometer as hydration reaction time passed. At the same time the slump flow test and Vicat setting test were carried out for comparing with the results of rheological properties. The fluidity of the W/B 30% decreased as the increase of replacement ratio of blast furnace slag. But in case of W/B 40%, the replacement ration did not significantly influenced to the slump flow value with the passage of hydration time. By the replacement of blast furnace slag to cement, initial setting was delayed and the time gap between initial and final setting became shorten. Through the regression analysis using Bingham model, there are a sudden changes of viscosity and yield stress around initial setting in case of low W/B 30%. The increase of workability by the change of free water in cement paste was offset by the coating effect of impermeable layer in case of W/B 40%.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.

Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure (수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발)

  • Kim, Sung-Bae;Yi, Na-Hyun;Nam, Jin-Won;Byun, Keun-Joo;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.149-158
    • /
    • 2010
  • Recently, numerous construction techniques for repairing and strengthening methods for above ground or air exposed concrete structure have been developed. However repairing and strengthening methods for underwater structural members under continuous loading, such as piers and steel piles need the further development. Therefore, this study develops an aqua epoxy, which can be used for repairing and strengthening of structural members located underwater. Moreover, using the epoxy material and strengthening fibers, a fiber reinforced composite sheet called Aqua Advanced FRP (AAF) for underwater usage is developed. To verify and to obtain properties of the material and the performance of AAF, several tests such as pull-off strength test, bond shear strength test, and chemical resistance test, were carried out. The results showed that the developed aqua epoxy does not easily dissolve in wet conditions and does not create any residual particle during hardening. In spite of underwater conditions, it showed the superior workability, because of the high viscosity over 30,000 cps and adhesion capacity over 2 MPa, which are nearly equivalent to those used in dry conditions. In case of the chemical resistance test, the developed aqua epoxy and composite showed the weight change of about 0.5~1.0%, which verifies the superior chemical resistance.

Physical Properties of Dredged Sand Treated by Washing and Sorting Dredged Soil (하천준설토를 세척 선별한 준설모래의 물리적 특성)

  • Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young;Bae, Kee-Sun;Lee, Sung-Bok;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Most of the dredged sand generated from the sewage pipe maintenance project and the government's four-river project are disposed depending on abandonment and filling-up. This is caused by the lack of related recycling technology using dredged sand appropriately and high absorption rate and micro-particles of dredged sand producted from existing sand production system. Thus, this study carried out a quality assessment for the dredged sand produced through the optimum washing and sorting system supplementing problems of existing dredged sand production system as a part of research to examine performance of removing micro-particles and foreign substances. As a result of the assessment, the dredged sand produced through the cleaning and sorting system showed a wide quality improvement effect in absorption rate, 0.08 mm sieve pass amount, clay lump volume and organic impurity content, and it turned out to satisfy both the quality standards of this study, KS F 2573(recycled aggregate for concrete) and KS F 2526(aggregate for concrete) so it could be confirmed that it would be able to be used as an aggregate for concrete in the future.

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.