• Title/Summary/Keyword: High Performance Computing

Search Result 1,117, Processing Time 0.025 seconds

Multi-layer Structure Based QCA Half Adder Design Using XOR Gate (XOR 게이트를 이용한 다층구조의 QCA 반가산기 설계)

  • Nam, Ji-hyun;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.291-300
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is a computing model designed to be similar to cellular automata, and an alternative technology for next generation using high performance and low power consumption. QCA is undergoing various studies with recent experimental results, and it is one of the paradigms of transistors that can solve device density and interconnection problems as nano-unit materials. An XOR gate is a gate that operates so that the result is true when either one of the logic is true. The proposed XOR gate consists of five layers. The first layer consists of OR gates, the third and fifth layers consist of AND gates, and the second and fourth layers are designed as passages in the middle. The half adder consists of an XOR gate and an AND gate. The proposed half adder is designed by adding two cells to the proposed XOR gate. The proposed half adder consists of fewer cells, total area, and clock than the conventional half adder.

Design of XOR Gate Based on QCA Universal Gate Using Rotated Cell (회전된 셀을 이용한 QCA 유니버셜 게이트 기반의 XOR 게이트 설계)

  • Lee, Jin-Seong;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is an alternative technology for implementing various computation, high performance, and low power consumption digital circuits at nano scale. In this paper, we propose a new universal gate in QCA. By using the universal gate, we propose a novel XOR gate which is reduced time/hardware complexity. The universal gate can be used to construct all other basic logic gates. Meanwhile, the proposed universal gate is designed by basic cells and a rotated cell. The rotated cell of the proposed universal gate is located at the central of 3-input majority gate structure. In this paper, we propose an XOR gate using three universal gates, although more than five 3-input majority gates are used to design an XOR gate using the 3-input majority gate. The proposed XOR gate is superior to the conventional XOR gate in terms of the total area and the consumed clock because the number of gates are reduced.

Topic Modeling to Identify Cloud Security Trends using news Data Before and After the COVID-19 Pandemic (뉴스 데이터 토픽 모델링을 활용한 COVID-19 대유행 전후의 클라우드 보안 동향 파악)

  • Soun U Lee;Jaewoo Lee
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.67-75
    • /
    • 2022
  • Due to the COVID-19 pandemic, many companies have introduced remote work. However, the introduction of remote work has increased attacks on companies to access sensitive information, and many companies have begun to use cloud services to respond to security threats. This study used LDA topic modeling techniques by collecting news data with the keyword 'cloud security' to analyze changes in domestic cloud security trends before and after the COVID-19 pandemic. Before the COVID-19 pandemic, interest in domestic cloud security was low, so representation or association could not be found in the extracted topics. However, it was analyzed that the introduction of cloud is necessary for high computing performance for AI, IoT, and blockchain, which are IT technologies that are currently being studied. On the other hand, looking at topics extracted after the COVID-19 pandemic, it was confirmed that interest in the cloud increased in Korea, and accordingly, interest in cloud security improved. Therefore, security measures should be established to prepare for the ever-increasing usage of cloud services.

Numerical Modelling Techniques of VPMM for Manta Type UUV (만타형 UUV의 VPMM 전산해석기법 개발)

  • Sang-Eui Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.151-151
    • /
    • 2023
  • An accurate prediction of the hydrodynamic maneuvering darivatives is essential to desing a robust control system of a UUV(unmanned underwater vehicle). Typically, these derivatives were estimated by either the towing tank experiment or semi-empirical methods. With the enhancement of high performance computing capacity, a numerical analysis using computational fluid dynamics has reach the level of experiment. Therefore, the aims of the present research are to numerically develop a computational model for the vertical planar motion mechanism of a UUV and to estimate the hydrodynamics loads in 6-DOF. The target structure of the present study was manta type UUV (12meter length). The numerical model was developed in 1/ 6 model scale. Numerical results were compared with the results of the towing tank experiment for validation. In the present study, a commercial RANS-based viscous solver STARCCM+ (ver 17.06) was used.

  • PDF

Research of PPI prediction model based on POST-TAVR ECG (POST-TAVR ECG 기반의 PPI 예측 모델 연구)

  • InSeo Song;SeMo Yang;KangYoon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.29-38
    • /
    • 2024
  • After Transcatheter Aortic Valve Replacement (TAVR), comprehensive management of complications, including the need for Permanent Pacemaker Implantation (PPI), is crucial, increasing the demand for accurate prediction models. Departing from traditional image-based methods, this study developed an optimal PPI prediction model based on ECG data using the XGBoost algorithm. Focusing on ECG signals like DeltaPR and DeltaQRS as key indicators, the model effectively identifies the correlation between conduction disorders and PPI needs, achieving superior performance with an AUC of 0.91. Validated using data from two hospitals, it demonstrated a high similarity rate of 95.28% in predicting PPI from ECG characteristics. This confirms the model's effective applicability across diverse hospital data, establishing a significant advancement in the development of reliable and practical PPI prediction models with reduced dependence on human intervention and costly medical imaging.

Goal-oriented Movement Reality-based Skeleton Animation Using Machine Learning

  • Yu-Won JEONG
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.267-277
    • /
    • 2024
  • This paper explores the use of machine learning in game production to create goal-oriented, realistic animations for skeleton monsters. The purpose of this research is to enhance realism by implementing intelligent movements in monsters within game development. To achieve this, we designed and implemented a learning model for skeleton monsters using reinforcement learning algorithms. During the machine learning process, various reward conditions were established, including the monster's speed, direction, leg movements, and goal contact. The use of configurable joints introduced physical constraints. The experimental method validated performance through seven statistical graphs generated using machine learning methods. The results demonstrated that the developed model allows skeleton monsters to move to their target points efficiently and with natural animation. This paper has implemented a method for creating game monster animations using machine learning, which can be applied in various gaming environments in the future. The year 2024 is expected to bring expanded innovation in the gaming industry. Currently, advancements in technology such as virtual reality, AI, and cloud computing are redefining the sector, providing new experiences and various opportunities. Innovative content optimized for this period is needed to offer new gaming experiences. A high level of interaction and realism, along with the immersion and fun it induces, must be established as the foundation for the environment in which these can be implemented. Recent advancements in AI technology are significantly impacting the gaming industry. By applying many elements necessary for game development, AI can efficiently optimize the game production environment. Through this research, We demonstrate that the application of machine learning to Unity and game engines in game development can contribute to creating more dynamic and realistic game environments. To ensure that VR gaming does not end as a mere craze, we propose new methods in this study to enhance realism and immersion, thereby increasing enjoyment for continuous user engagement.

Data Efficient Image Classification for Retinal Disease Diagnosis (데이터 효율적 이미지 분류를 통한 안질환 진단)

  • Honggu Kang;Huigyu Yang;Moonseong Kim;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.25 no.3
    • /
    • pp.19-25
    • /
    • 2024
  • The worldwide aging population trend is causing an increase in the incidence of major retinal diseases that can lead to blindness, including glaucoma, cataract, and macular degeneration. In the field of ophthalmology, there is a focused interest in diagnosing diseases that are difficult to prevent in order to reduce the rate of blindness. This study proposes a deep learning approach to accurately diagnose ocular diseases in fundus photographs using less data than traditional methods. For this, Convolutional Neural Network (CNN) models capable of effective learning with limited data were selected to classify Conventional Fundus Images (CFI) from various ocular disease patients. The chosen CNN models demonstrated exceptional performance, achieving high Accuracy, Precision, Recall, and F1-score values. This approach reduces manual analysis by ophthalmologists, shortens consultation times, and provides consistent diagnostic results, making it an efficient and accurate diagnostic tool in the medical field.

An Iterative, Interactive and Unified Seismic Velocity Analysis (반복적 대화식 통합 탄성파 속도분석)

  • Suh Sayng-Yong;Chung Bu-Heung;Jang Seong-Hyung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • Among the various seismic data processing sequences, the velocity analysis is the most time consuming and man-hour intensive processing steps. For the production seismic data processing, a good velocity analysis tool as well as the high performance computer is required. The tool must give fast and accurate velocity analysis. There are two different approches in the velocity analysis, batch and interactive. In the batch processing, a velocity plot is made at every analysis point. Generally, the plot consisted of a semblance contour, super gather, and a stack pannel. The interpreter chooses the velocity function by analyzing the velocity plot. The technique is highly dependent on the interpreters skill and requires human efforts. As the high speed graphic workstations are becoming more popular, various interactive velocity analysis programs are developed. Although, the programs enabled faster picking of the velocity nodes using mouse, the main improvement of these programs is simply the replacement of the paper plot by the graphic screen. The velocity spectrum is highly sensitive to the presence of the noise, especially the coherent noise often found in the shallow region of the marine seismic data. For the accurate velocity analysis, these noise must be removed before the spectrum is computed. Also, the velocity analysis must be carried out by carefully choosing the location of the analysis point and accuarate computation of the spectrum. The analyzed velocity function must be verified by the mute and stack, and the sequence must be repeated most time. Therefore an iterative, interactive, and unified velocity analysis tool is highly required. An interactive velocity analysis program, xva(X-Window based Velocity Analysis) was invented. The program handles all processes required in the velocity analysis such as composing the super gather, computing the velocity spectrum, NMO correction, mute, and stack. Most of the parameter changes give the final stack via a few mouse clicks thereby enabling the iterative and interactive processing. A simple trace indexing scheme is introduced and a program to nike the index of the Geobit seismic disk file was invented. The index is used to reference the original input, i.e., CDP sort, directly A transformation techinique of the mute function between the T-X domain and NMOC domain is introduced and adopted to the program. The result of the transform is simliar to the remove-NMO technique in suppressing the shallow noise such as direct wave and refracted wave. However, it has two improvements, i.e., no interpolation error and very high speed computing time. By the introduction of the technique, the mute times can be easily designed from the NMOC domain and applied to the super gather in the T-X domain, thereby producing more accurate velocity spectrum interactively. The xva program consists of 28 files, 12,029 lines, 34,990 words and 304,073 characters. The program references Geobit utility libraries and can be installed under Geobit preinstalled environment. The program runs on X-Window/Motif environment. The program menu is designed according to the Motif style guide. A brief usage of the program has been discussed. The program allows fast and accurate seismic velocity analysis, which is necessary computing the AVO (Amplitude Versus Offset) based DHI (Direct Hydrocarn Indicator), and making the high quality seismic sections.

  • PDF

Design and Implementation of the Extended SLDS Supporting SDP Master Replication (SDP Master 이중화를 지원하는 확장 SLDS 설계 및 구현)

  • Shin, In-Su;Kang, Hong-Koo;Lee, Ki-Young;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.79-91
    • /
    • 2008
  • Recently, with highly Interest In Location-Based Service(LBS) utilizing location data of moving objects, the GALIS(Gracefully Aging Location Information System) which is a cluster-based distributed computing architecture was proposed as a more efficient location management system of moving objects. In the SLDS(Short-term location Data Subsystem) which Is a subsystem of the GALIS, since the SDP(Short-term Data Processor) Master transmits current location data and queries to every SDP Worker, the SDP Master reassembles and sends query results produced by SDP Workers to the client. However, the services are suspended during the SDP Master under failure and the response time to the client is increased if the load is concentrated on the SDP Master. Therefore, in this paper, the extended SLDS was designed and implemented to solve these problems. Though one SDP Master is under failure, the other can provide the services continually, and so the extended SLDS can guarantee the high reliability of the SLDS. The extended SLDS also can reduce the response time to the client by enabling two SDP Masters to perform the distributed query processing. Finally, we proved high reliability and high availability of the extended SLDS by implementing the current location data storage, query processing, and failure takeover scenarios. We also verified that the extended SLDS is more efficient than the original SLDS through the query processing performance evaluation.

  • PDF

Performance Analysis of TCAM-based Jumping Window Algorithm for Snort 2.9.0 (Snort 2.9.0 환경을 위한 TCAM 기반 점핑 윈도우 알고리즘의 성능 분석)

  • Lee, Sung-Yun;Ryu, Ki-Yeol
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 2012
  • Wireless network support and extended mobile network environment with exponential growth of smart phone users allow us to utilize the network anytime or anywhere. Malicious attacks such as distributed DOS, internet worm, e-mail virus and so on through high-speed networks increase and the number of patterns is dramatically increasing accordingly by increasing network traffic due to this internet technology development. To detect the patterns in intrusion detection systems, an existing research proposed an efficient algorithm called the jumping window algorithm and analyzed approximately 2,000 patterns in Snort 2.1.0, the most famous intrusion detection system. using the algorithm. However, it is inappropriate from the number of TCAM lookups and TCAM memory efficiency to use the result proposed in the research in current environment (Snort 2.9.0) that has longer patterns and a lot of patterns because the jumping window algorithm is affected by the number of patterns and pattern length. In this paper, we simulate the number of TCAM lookups and the required TCAM size in the jumping window with approximately 8,100 patterns from Snort-2.9.0 rules, and then analyse the simulation result. While Snort 2.1.0 requires 16-byte window and 9Mb TCAM size to show the most effective performance as proposed in the previous research, in this paper we suggest 16-byte window and 4 18Mb-TCAMs which are cascaded in Snort 2.9.0 environment.