• 제목/요약/키워드: High Nitrogen Steels

검색결과 51건 처리시간 0.034초

STS 347 및 STS 310S 오스테나이트계 스테인리스강의 고온 가스질화 열처리 특성 연구 (A Study on the High Temperature Gas Nitriding Heat Treatment of STS 347 and STS 310S Austenitic Stainless Steel)

  • 유대경;공정현;이해정;성장현;이해우
    • 대한금속재료학회지
    • /
    • 제46권11호
    • /
    • pp.708-712
    • /
    • 2008
  • The influence of high temperature gas nitriding (HTGN) in STS347 and STS310S steels was experimentally investigated. The HTGN was carried out at $1,050^{\circ}C{\sim}1,150^{\circ}C$ for 10 hrs in a gaseous atmosphere containing $1kg/mm^2$ of nitrogen. After HTGN, fine precipitates of $Cr_2N$ and NbN appeared in austenite on the surface of STS 347, while nitrogen pearlite, which was layeredof $Cr_2N$ and austenite alternatively, appeared in austenite on the surface of STS 310S. The surface hardness of HTGN-treated, STS 347 and STS 310S specimens was 250~360 Hv and 270~400 Hv, respectively, depending on the temperature of HTGN. The nitrogen content was analyzed 1.4 wt% and 1.6 wt% at the surface layer of STS 347 and STS 310S steels, respectively. In addition, an improvement in the corrosion resistance of HTGN treated specimens was observed.

AIP 법에서 질소가스 압력이 고속도강의 TiN 코팅층 성질에 미치는 영향 (Effect of Nitrogen Gas Pressure on the Property of TiN-Coated Layer of High Speed Steel by Arc ion Plating)

  • 김해지;전만수
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.124-130
    • /
    • 2008
  • The effect of nitrogen gas pressure in arc ion plating on surface properties of the TiN-coated high speed steel(SKH51) is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured fur various nitrogen gas pressures. It has been shown that the nitrogen gas pressure has a considerable effect on the surface roughness, adhesion strength, atomic distribution of TiN, and surface deposition of TiN of the high speed steels but that it has little influence on the micro-hardness and coated thickness.

Effects of Rare Earth Metal Addition on the Cavitation Erosion-Corrosion Resistance of Super Duplex Stainless Steels

  • 심성익;박용수;김순태;송치복
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.301-301
    • /
    • 1999
  • Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0,4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

스테인레스강의 열간변형저항 (High Temperature Deformation Resistance of Stainless Steels)

  • 김영환;정병완
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.366-372
    • /
    • 1999
  • The deformation behavior of commercial stainless steels under hot rolling conditions was investigated by means of hot compression tests performed in the temperature range 800$^{\circ}C$ to 1200$^{\circ}C$. The measured flow stress-strain curves were analyzed by using a simple flow stress model. It was found that the reference strength of stainless steels are much higher than that of carbon steel and that nitrogen and molybdenum alloying greatly increases flow stress of austenitic stainless steel. Ferritic and duplex stainless steel showed comparatively low flow stresses. The flow stress model, which correlates the flow stress with temperature and strain rate, was applied to predict roll forces during hot-plate rolling of stainless steels.

  • PDF

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

슈퍼 듀플렉스 용접부에 미치는 보호가스의 영향 (The effect of shielding gases on the characteristics of super duplex weld metal)

  • 홍인표;이철환;김유기;김대순
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.209-211
    • /
    • 2005
  • Super duplex stainless steels have been used for offshore oil and gas piping systems which are subject to corrosion atmosphere, because they have excellent resistance to Stress Corrosion Cracking (SCC) and Pitting corrosion and high strength/weight ratio. Normally, the welding for duplex stainless steels has been peformed using GTAW with Ar shielding gas. However, in case of using Ar as shielding gas, the corrosion resistance at root weld metal will be deteriorated due to loss of nitrogen from weld deposit during welding. It is wellknown that the corrosion resistance of super duplex stainless can be restored by addition of nitrogen as shielding gas. In this study, we made super duplex welding with using several kinds of shielding and purging gases and investigated the relationship between shielding gas and corrosion resistance. Consequently, it was shown that corrosion resistance of weld deposit can be restored by addition of $N_{2}$ as shielding gas.

  • PDF