• Title/Summary/Keyword: High Level Nuclear Waste

Search Result 236, Processing Time 0.021 seconds

Extraction behaviors of platinum group metals in simulated high-level liquid waste by a hydrophobic ionic liquid bearing an amino moiety

  • Wu, Hao;Kim, Seong-Yun;Takahashi, Tadayuki;Oosugi, Haruka;Ito, Tatsuya;Kanie, Kiyoshi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1218-1223
    • /
    • 2021
  • A hydrophobic ionic liquid including an amino moiety ([DiOcAPmim][NTf2]) was synthesized. Its extraction behaviors towards Pd(II), Ru(III), Rh(III) were investigated in nitric acid aqueous solution as a function of contact time, effect of concentration of nitric acid, effect of temperature, and effect of co-existing metal ions. The extraction kinetics of Pd(II) was fairly fast and extraction equilibrium can be attained within only 5 min under the [HNO3] = 2.05 M. When [HNO3]< 1 M, the extraction percentage of Pd(II), Ru(III), Rh(III) were all above 80%. When [HNO3] reached 2 M, all of the extraction percentage decreased and in an order of Pd(II)>Ru(III)>Rh(III). When [HNO3]> 2 M, the extraction performance gradually recovered. The effect of temperature can slightly affect the extraction performance of Pd(II). Furthermore, in simulated high-level liquid waste, [DiOcAPmim][NTf2] showed a better preference towards Pd(II) under the interference of various other co-existing metal ions.

Hydraulic Conductivity of Bentonite-Sand Mixture for a Potential Backfill Material for a High-level Radioactive Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.495-503
    • /
    • 2000
  • The hydraulic conductivities in the bentonite-sand mixtures with high density were measured, and the effects of sand content and dry density on the hydraulic conductivity were investigated. The hydraulic conductivities of the bentonite-sand mixtures with a dry density of 1.6 Mg/㎥ and 1.8 Mg/㎥ are less than 10$^{-11}$ m/s when the sand content is not higher than 70 wt%. However at the sand content of 90 wt%, the hydraulic conductivity increases rapidly At the same dry density, the logarithm of hydraulic conductivity increases linearly with increasing sand content. The hydraulic conductivity of the bentonite-sand mixture can be explained by the concept of effective clay dry density, and using this concept, the hydraulic conductivities for the mixtures with various sand contents and dry densities can be estimated.

  • PDF

The State-of-the Art of the Borehole Disposal Concept for High Level Radioactive Waste (고준위방사성폐기물의 시추공 처분 개념 연구 현황)

  • Ji, Sung-Hoon;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.

Analysis of Overseas Data Management Systems for High Level Radioactive Waste Disposal (고준위방사성폐기물 처분 관련 자료 관리 해외사례 분석)

  • MinJeong Kim;SunJu Park;HyeRim Kim;WoonSang Yoon;JungHoon Park;JeongHwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.323-334
    • /
    • 2023
  • The vast volumes of data that are generated during site characterization and associated research for the disposal of high-level radioactive waste require effective data management to properly chronicle and archive this information. The Swedish Nuclear Fuel and Waste Management Company, SKB, established the SICADA database for site selection, evaluation, analysis, and modeling. The German Federal Company for Radioactive Waste Disposal, BGE, established ArbeitsDB, a database and document management system, and the ELO data system to manage data collected according to the Repository Site Selection Act. The U.K. Nuclear Waste Services established the Data Management System to manage any research and survey data pertaining to nuclear waste storage and disposal. The U.S. Department of Energy and Office of Civilian Radioactive Waste Management established the Technical Data Management System for data management and subsequent licensing procedures during site characterization surveys. The presented cases undertaken by these national agencies highlight the importance of data quality management and the scalability of data utilization to ensure effective data management. Korea should also pursue the establishment of both a data management concept for radioactive waste disposal that considers data quality management and scalability from a long-term perspective and an associated data management system.

Adsorption behavior of platinum-group metals and Co-existing metal ions from simulated high-level liquid waste using HONTA and Crea impregnated adsorbent

  • Naoki Osawa;Seong-Yun Kim;Masahiko Kubota;Hao Wu;Sou Watanabe;Tatsuya Ito;Ryuji Nagaishi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.812-818
    • /
    • 2024
  • The volume and toxicity of radioactive waste can be decreased by separating the components of high-level liquid waste according to their properties. An impregnated silica-based adsorbent was prepared in this study by combining N,N,N',N',N",N"-hexa-n-octylnitrilotriacetamide (HONTA) extractant, N',N'-di-n-hexyl-thiodiglycolamide (Crea) extractant, and macroporous silica polymer composite particles (SiO2-P). The performance of platinum-group metals adsorption and separation on prepared (HONTA + Crea)/SiO2-P adsorbent was then assessed together with that of co-existing metal ions by batch-adsorption and chromatographic separation studies. From the batch-adsorption experiment results, (HONTA + Crea)/SiO2-P adsorbent showed high adsorption performance of Pd(II) owing to an affinity between Pd(II) and Crea extractant based on the Hard and Soft Acids and Bases theory. Additionally, significant adsorption performance was observed toward Zr(IV) and Mo(VI). Compared with studies using the Crea extractant, the high adsorption performance of Zr(IV) and Mo(VI) is attributed to the HONTA extractant. As revealed from the chromatographic experiment results, most of Pd(II) was recovered from the feed solution using 0.2 M thiourea in 0.1 M HNO3. Additionally, the possibility of recovery of Zr(IV), Mo(VI), and Re(VII) was observed using the (HONTA + Crea)/SiO2-P adsorbent.

Swelling Pressures of a Potential Buffer Material for High-Level Waste Repository

  • Lee, Jae-Owan;Cho, Won-Jin;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.139-150
    • /
    • 1999
  • The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/$\textrm{cm}^2$ to 190.2 Kg/$\textrm{cm}^2$ under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled off to nearly constant value.

  • PDF

Analysis of Functional Criteria for Buffer Material in a High-level Radioactive Waste Repository

  • W. J. Cho;Lee, J. O.;K. S. Chun;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.116-132
    • /
    • 1999
  • This study is intended to analyze the requirements of a buffer material that is one of the major components of the engineered barriers in a high-level radioactive waste repository. The characteristics of potential materials for the buffer in the repository were analyzed and a candidate material was selected. And, based on the current knowledge and the information from various sources, the requirements of a buffer material were evaluated. Finally its quantitative functional criteria on the generic viewpoint has been recommended to be supplied as a guideline for the development of the reference disposal concept and the related buffer material in Korea. The criteria are composed of seven major items, such as hydraulic conductivity, retardation capacity, swelling potential and swelling pressure, thermal conductivity, longevity, organic matter content, and mechanical properties.

  • PDF

AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

  • Kwon, S.;Cho, W.J.;Lee, J.O.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.41-52
    • /
    • 2013
  • Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

Three-Dimensional Modelling and Sensitivity Analysis for the Stability Assessment of Deep Underground Repository

  • Kwon, S.;Park, J.H.;Park, J.W.;Kang, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.605-618
    • /
    • 2001
  • For the mechanical stability assessment of a deep underground high-level waste repository. computer simulations using FLAC3D were carried out and important parameters including stress ratio, depth, tunnel size, joint spacing, and joint properties were chosen from sensitivity analysis. The main effect as well as the interaction effect between the important parameters could be investigated effectively using fractional factorial design . In order to analyze the stability of the disposal tunnel and deposition hole in a discontinuous rock mass, different modelings were performed under different conditions using 3DEC and the influence of joint distribution and properties, rock properties and stress ratio could be determined. From the three dimensional modelings, it was concluded that the conceptual repository design was mechanically stable even in a discontinuous rock mass.

  • PDF