• Title/Summary/Keyword: High Impedance Surface

Search Result 180, Processing Time 0.041 seconds

Corrosion behaviors of plasma electrolytic oxidation (PEO) treated high-silicon aluminum alloys

  • Park, Deok-Yong;Chang, Chong-Hyun;Oh, Yong-Jun;Myung, Nosang V.;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.3
    • /
    • pp.143-155
    • /
    • 2022
  • Ceramic oxide layers successfully were formed on the surface of cast Al alloys with high Si contents using plasma electrolytic oxidation (PEO) process in electrolytes containing Na2SiO3, NaOH, and additives. The microstructure of the oxide layers was systematically analyzed using scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (TEM), X-ray diffraction patterns (XRD), and energy X-ray dispersive spectroscopy (EDS). XRD analysis indicated that the PEO untreated high-silicon Al alloys (i.e., 17.1 and 11.7 wt.% Si) consist of Al, Si and Al2Cu phases whereas Al2Cu phase selectively disappeared after PEO treatment. PEO process yielded an amorphous oxide layer with few second phases including γ-Al2O3 and Fe-rich phases. The corrosion behaviors of high-silicon Al alloys treated by PEO process were investigated using electrochemical impedance spectroscopy (EIS) and other electrochemical techniques (i.e., open circuit potential and polarization curve). Electroanalytical studies indicated that high-silicon Al alloys treated by PEO process have greater corrosion resistance than high-silicon alloys untreated by PEO process.

High Work Function of AZO Fhin Films as Insertion Layer between TCO and p-layer and Its Application of Solar Cells

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.426.1-426.1
    • /
    • 2016
  • We report high work function Aluminum doped zinc oxide (AZO) films as insertion layer as a function of O2 flow rate between transparent conducting oxides (TCO) and hydrogenated amorphous silicon oxide (a-SiOx:H) layer to improve open circuit voltage (Voc) and fill factor (FF) for high efficiency thin film solar cell. However, amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier like impedance at the interface between a-SiOx:H windows and TCO. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiOx:H. In this study, we report on the silicon thin film solar cell by using as insertion layer of O2 reactive AZO films between TCO and p-type a-SiOx:H. Significant efficiency enhancement was demonstrated by using high work-function layers (4.95 eV at O2=2 sccm) for engineering the work function at the key interfaces to raise FF as well as Voc. Therefore, we can be obtained the conversion efficiency of 7 % at 13mA/cm2 of the current density (Jsc) and 63.35 % of FF.

  • PDF

Dielectric and Electrical Characteristics of Lead-Free Complex Electronic Material: Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3

  • Sahu, Manisha;Hajra, Sugato;Choudhary, Ram Naresh Prasad
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.469-476
    • /
    • 2019
  • A lead-free bulk ceramic having a chemical formula $Ba_{0.8}Ca_{0.2}(Ti_{0.8}Zr_{0.1}Ce_{0.1})O_3$ (further termed as BCTZCO) is synthesized using mixed oxide route. The structural, dielectric, impedance, and conductivity properties, as well as the modulus of the synthesized sample are discussed in the present work. Analysis of X-ray diffraction data obtained at room temperature reveals the existence of some impurity phases. The natural surface morphology shows close packing of grains with few voids. Attempts have been made to study the (a) effect of microstructures containing grains, grain boundaries, and electrodes on impedance and capacitive characteristics, (b) relationship between properties and crystal structure, and (c) nature of the relaxation mechanism of the prepared samples. The relationship between the structure and physical properties is established. The frequency and temperature dependence of the dielectric properties reveal that this complex system has a high dielectric constant and low tangent loss. An analysis of impedance and related parameters illuminates the contributions of grains. The activation energy is determined for only the high temperature region in the temperature dependent AC conductivity graph. Deviation from the Debye behavior is seen in the Nyquist plot at different temperatures. The relaxation mechanism and the electrical transport properties in the sample are investigated with the help of various spectroscopic (i.e., dielectric, modulus, and impedance) techniques. This lead free sample will serve as a base for device engineering.

Preparation and Properties of Polymer Blends Type Humidity Sensor for Process Safety (공정안전용 Polymer Blend형 습도센서의 특성 연구)

  • Kang Young-Goo;Cho Myoung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.51-56
    • /
    • 2004
  • Conductive polymer blends and composites are widely used for different safety application such as electrostatic charge dissipation(ESD), electromagnetic interference(EMI) shielding, electrostatic prevention and safety chemical sensor. In order to prepare a impedance-type humidity sensor that is durable at high humidities and high temperature, electically conductive polymer blends based on diallyldimethylammonium chloride(DADMAC) and epoxy were prepared in this study. The polymer blends type conductive ionomer exhibits reaction each other DADMAC and epoxy in FT-IR and DSC analysis. The blends material was traced by new peak at 1600cm-1 and appeard improvement of thermal resistance by melting point shift. Alumina substrate was deposited a pair of gold electrodes by screen printing. The blend material were spin-coated with a thin film type on the surface of alumina substrate. The polymer bleld type sensor exhibits a linear impedance increasing better than DADMAC coated humidity sensor. Also it shows good sensitivity, low hysteresis and durability against high humidity.

Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel (아연 전기 도금 강의 환경친화적인 화성처리 기술 개발)

  • Kim, Seong-Jong;Kim, Jeong-Il;Jang, Seok-Ki
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

High Performance of Nano-sized LiFePO4 Positive Electrode Using Etched Al Current Collector

  • Lee, Gil-Won;Ryu, Ji-Heon;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.157-162
    • /
    • 2010
  • The electrodes comprising nano-sized $LiFePO_4$, carbon black and binder are prepared with two different Al current collectors. One is the generally used normal Al foil and the other is the chemically etched Al foil. Surface characteristics of each Al foil and electrochemical performance of the cathodes using each foil are investigated. The electrode from the etched Al foil exhibits better physical and electrochemical properties as compared to those of the normal Al foil because the etched Al foil has rough surface with sub-micron pores which improve the adhesion between the electrode materials and the substrate. The electrode on the etched Al foil has such a strong peel strength that the impedance is smaller than that of normal one. Indeed the $LiFePO_4$ electrode from the etched Al foil exhibits a better rate capability and remains intact even after storage for 1 week at the charged state at the elevated temperature $60^{\circ}C$.

Combined effect of nitrogen- and oxygen functional groups on electrochemical performance of surface treated multi-walled carbon nanotubes (표면처리된 탄소나노튜브의 질소 및 산소관능기 도입에 따른 전기화학적 특성)

  • Kim, Ji-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.214.1-214.1
    • /
    • 2011
  • In this work, the electrochemical properties of the surface treated multi-walled carbon nanotubes (MWNTs) are investigated for supercapacitors. Nitrogen- and oxygen functional groups containing MWNTs are prepared by nitrogen precursors and acidic treatment, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and Zeta-potential measurements. The electrochemical properties of the MWNTs are investigated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M $H_2SO_4$ at room temperature. As a result, these functionalized MWNTs lead to an increase in the specific capacitance as compared with the pristine MWNTs. It proposes that the pyridinic and pyridinic-N-oxides nitrogen species influence on the specific capacitance due to their positive charges, and thus an improved electron transfer at high current loads, since they are the most important functional groups affecting capacitive behaviors.

  • PDF

Corrosion behavior of separator for molten Cab -onate Fuel Cell (MCFC 분리판 부식거동에 관한 연구)

  • 이성일;김귀열
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.177-186
    • /
    • 2000
  • The molten carbonate fuel cell has conspicuous features and high potential in being used as an energy converter of various fuels to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of Fe/20Cr/Ti has been done in (62+38)mol % (Li+K) $CO_3$ melt at 923K by using. steady state polarization and electrochemical impedance spectroscopy method. It found that the corrosion current of these Febased alloys decreased with increasing Ti content, and this attribute to the formation of $LiCrO_2$ layer at the surface.

  • PDF

Mitigation of Steel Rebar Corrosion Embedded in Mortar using Ammonium Phosphate Monobasic as Hreen Inhibitor (제 1 인산 암모늄 사용량에 따른 시멘트 모르타르의 철근방청성능 평가에 관한 실험적 연구)

  • Tran, Duc Thanh;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.112-113
    • /
    • 2021
  • Phosphate based inhibitor is playing a decisive role in inhibiting the corrosion of steel rebar in chloride condition. We have used different amount of ammonium phosphate monobasic (APMB) as corrosion inhibitor in mortar with different amount of chloride ions. The compressive strength, flexural strength, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization resistance (PPR), scanning electron microscopy (SEM) and Raman spectroscopy were performed to access the effect of inhibitor on corrosion resistance. As the amount of inhibitor is increased, the compressive strength increased. The electrochemical results show that as the amount of inhibitor and chloride ions are increased, the total impedance and corrosion resistance of steel rebar increased attributed to the formation of the stable oxide films onto the steel rebar surface. It is suggested that APMB can work in high concentration of chloride ions present in concrete where phosphate ion helps in formation of stable and protective phosphate based oxide film.

  • PDF

Measurement Technique of Membrane Fouling in Processes Utilizing Ion-Conducting Polymer Membranes (이온전도성 고분자막 활용 공정에서의 막 오염 현상 측정 기술)

  • Han, Soo-Jin;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.434-440
    • /
    • 2017
  • Electrical impedance spectroscopy is used to detect membrane fouling in-situ in reverse electrodialysis. The impedance data for the AMX membrane being fouled in the reverse electrodialysis are plotted and analyzed by Nyquist and admittance method. The meaningful graphical analyses for the fouling phenomena could be done by both Nyquist and admittance method. In addition, the unstable initial fouling stage was identified by the admittance data with high standard deviation, and the structural change of the fouling layer formed at the surface of anion-exchange membranes with the operation time of reverse electrodialysis was also detected.