• 제목/요약/키워드: High Hardened Steel

검색결과 116건 처리시간 0.025초

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

곡면 Fitting을 이용한 고속가공 표면거칠기의 최소화 (Minimization of Surface Roughness for High Speed Machining by Surface Fitting)

  • 정종윤;조혜영;이춘만;문덕희
    • 산업경영시스템학회지
    • /
    • 제27권2호
    • /
    • pp.37-43
    • /
    • 2004
  • High speed machining is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. It reduces machining time because of the high feed and the high speed of a spindle. In addition it gets rid of post processes for high precision machining. When the high speed machining is applied to especially hardened steel, operators should select the proper parameters of machining. This can produce machining surfaces which is qualified with good surface roughness. This paper presents a method for selecting machining parameters to minimize surface roughness with high speed machining in cutting the hardened steels. Experimental data for surface roughness are collected in a machining shop based on the cutting feed and the spindle rotation. The data fits in hi-cubic polynomial surface of mathematical form. From the model this research minimize the surface roughness to find the optimal values of the feed and the spindle speed. This paper presents a program which automatically generates optimal solutions from the raw data of experiments.

미세 홈 형성을 위한 마이크로 가공기술에 관한 연구 (A Study on the Micro-machining Technique for Fabrication of Micro Grooves)

  • 박정우;이은상;문영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2000
  • Micro-machining, one of the non-traditional machining techniques, can achieve a wanted shape of the surface using metal dissolution with electrochemical reaction and can be applied to the metal such as high tension, heat resistance and hardened steel. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and the current is applied. Traditional machining has been used in the industries such as cutting, deburring, drilling and shaping. The aim of this work is to develop Micro-machining techniques for micro shape by establishing appropriate machining parameters of micro-machining

  • PDF

이온질화 및 질탄화 처리된 SCr430B 박판강의 인장 및 피로특성 (Tensile and High Cycle Fatigue Properties of Ion-nitrided and Nitro-carburized SCr430B Steels)

  • 박성혁;이종수
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.354-359
    • /
    • 2012
  • Effects of a nitriding treatment on the tensile and high cycle fatigue properties were investigated by conducting ion-nitriding and gas nitro-caburizing treatments on the spheroidized SCr430B medium-carbon steel and performing tensile and tension-tension high cycle fatigue tests. The nitrided samples showed much lower strength and ductility compared to those in the initial as-spheroidized state and premature fracture occurred at the hardened layers. The micro-voids in the compound layer caused fatigue crack initiation. Thus, the removal of the compound layer with micro-voids remarkably improved the fatigue resistance to even beyond that of the as-spheroidized sample.

Capabilities of Two Chromium Powder Metallurgy Steels for High Performance Applications at Conventional Sintering Temperatures

  • Kinga, Patrick;Lindsley, Bruce
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.134-135
    • /
    • 2006
  • Ancorsteel 4300, a high performance Cr-Si-Ni-Mo steel, was unveiled two years ago as the first in a series of powder metallurgy alloys that will simulate wrought steel compositions. Advantages of this alloy include good compressibility, high hardenability, and excellent dimensional stability. More important, however, is that this alloy has the ability to be effectively sintered at $1120^{\circ}C$ and maintain oxygen contents below 500 ppm. This unique blend of performance and processing capabilities provides static and dynamic properties that exceed those of conventional powder metallurgy alloys and approach wrought gearing materials. A second Cr-Si-Ni-Mo alloy has now been developed that offers complimentary performance levels at a lower Mo content. This manuscript reviews properties of the two chromium steels with comparisons to traditional sinter-hardened and heat-treated powder metallurgy alloys.

  • PDF

CW Nd:YAG레이저를 이용한 금형 재료의 표면열처리 (Surface Heat treatment of Die material by means of CW Nd:YAG Laser)

  • 유영태;신호준;장우양
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.67-74
    • /
    • 2004
  • Laser heat treatment is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_2$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching action to occur and the formation of matrensitic structure. In this investigation, the microstructrual features occurring in Nd:YAG laser hardening SM45C and $STD_11$ steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimisation of the processing parameters for maximum hardened depth of SM45C and $STD_11$ steel specimens of 10mm thickness by using CW:YAG laser.

Yb:YAG 디스크로 레이저 표면 용융 경화된 SKD61 열간금형강의 경도와 미세조직에 미치는 레이저 출력의 영향 (Effects of laser power on hardness and microstructure of the surface melting hardened SKD61 hot die steel using Yb:YAG disk laser)

  • 이광현;최성원;강정윤
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.54-61
    • /
    • 2015
  • In this study, effect of laser power on hardness and microstructure of SKD61 Hot Die steel of which surface was melted and hardened with Yb:YAG disk laser was investigated. Beam speed was fixed at 70 mm/sec and distance between them was 0.8 mm about Laser surface melting. The only thing that was changed laser power. Laser powers were 2.0, 2.4 and 2.8 kW. No defect was found under all conditions. As the laser power increased, the penetration depth were deepened and the bead width was also widened. There was no hardness deviation of fusion zone at same laser power and it was higher than that of heat affected zone. In addition, the more laser power increased, the more hardness in fusion zone decreased. Fusion zone was macroscopically dendrite structure. However, core matric in dendrite was lath martensite of 100 nm size. There were $M_{23}C_6$ of 500 nm and the VC and $Mo_2C$ of a nano meters on boundary of dendrite.

와전류법을 이용한 강의 표면경화층 깊이의 비파괴적 측정 (Nondestructive Measurement of Case Hardening Depth with Eddy Current Method)

  • 이계완;한승룡;박은수
    • 비파괴검사학회지
    • /
    • 제11권1호
    • /
    • pp.38-43
    • /
    • 1991
  • The relationship between eddy current response and case hardening depth has been studied on SM40C(KS D-3752) and SCM440(KS D-3711) steels which were surface hardened by high frequency induction hardening. The results obtained in this study were as follows ; 1) Case hardening depth was successfully measured by observing the eddy current impedance changes of each steel. The impedance decreased linearly with increasing case hardening depth. 2) For large impedance gradient between the hardened surface and core metal, the eddy current response was more sensitive to case hardening depth than for low impedance gradient.

  • PDF

CBN 볼 엔드밀의 최적 절삭조건에 관한 연구- I (A Study on the Optimum Cutting Conditions of CBN Ball Endmill- I)

  • 이기우;최상우;이종찬;강추욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.20-25
    • /
    • 1996
  • The needs to machine hardened steels with high productivity and good surface integrity have been increased in the dies & molds industry. This paper presents some experimental results on the CBN ball endmilling for hardened tool steel. This investigation concerns on the effects of cutting speed and cutting fluids on the cutting performance such as cutting forces, tool wear, and surface finish. The wear of CBN ball endmill for each cutting conditions were also examined through the microscopic observation. It has been found out that the higher cutting speeds with cutting fluids result in better cutting performance.

  • PDF

CBN 볼 엔드밀의 최적 절삭조건에 관한 연구 (A Study on the Optimum Cutting Conditions of CBN Ball Endmill)

  • 최상우;이기우;이종찬
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.157-163
    • /
    • 1997
  • The needs to machine hardened steels with high productivity and good sufrace integrity have been increased in the dies & molds industry. This paper presents some experimental results on the CBN ball endmilling for hardened tool steel. This investigation concerns on the effects of cutting fluids, cutting speed, and feed on the cutting performance such as cutting forces, tool wear, and surface finish. The wear of CBN ball endmill for each cutting conditions were also examined through the microscopic observation. It has been found that the higher cutting speeds with cutting fluids result in better cutting performance.

  • PDF