• 제목/요약/키워드: High Frequency Noise

검색결과 2,052건 처리시간 0.025초

지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구 (Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling)

  • 이두성
    • 지구물리와물리탐사
    • /
    • 제1권1호
    • /
    • pp.25-30
    • /
    • 1998
  • 공동충전 효과를 검증하기 위하여 실시한 시차 공대공 탄성파 탐사자료로부터 지하공동 부존 지역에서 충전 전과 후에 매질의 탄성파 전파속도의 변화를 확인하였다. 시차 공대공 탄성파 탐사자료에 나타난 반응과 시추조사 결과에 의하면 본 지역의 공동은 규모가 극히 소규모이거나 또는 폐석 등으로 충전된 것으로 보인다. 공동충진 효과는 토모그래피로부터 도출된 속도단면상의 탄성파 속도의 증가량을 분석함으로써 평가하였다. 시추공용 에어건을 진원으로 24-채널 하이드로폰을 수진기로 하여 자료를 취득하였다. 취득한 자료에는 무시할 수 없을 정도의 source statics를 확인할 수 있었다. 본 논문에서 제시한 보정방법은 2단계로; 1) 불규칙한 발파시점에 의한 영향 보정과 2) 잔여 정보정으로 이는 진원의 부정확한 위치에 대한 정보정이다. 본 논문에서는 고주파수 성분의 수치잡음이 억제되고 관심대상 부분에서 비교적 고분해능 영상을 도출할 수 있는 다단계 역산 방안을 제시하였다. 일반적으로 최소자승 주시토모그래피로는 평활화된 속도 영상을 얻을 수 있다. 따라서 이러한 역산으로는 비교적 소규모의 구간에서 발생한 적은 속도변화를 영상화하기에는 어려운 면이 있다. 본 논문에서는 속도모델의 파라메터를 변화시킨 2단계 제어 역산법으로 도출한 시차 토모그램으로부터 채굴 영향대에서 발생한 매질의 속도변화를 시각화 할 수 있었다. 2단계 역산법은 1-단계에서는 적정한 크기의 균일 격자로 구성된 모델을 사용하여 토모그램을 작성하고 이 토모그램에 2차원 중위수 필터를 적용하여 대략적인 속도구조 모델을 작성한다. 2-단계 역산시는 1-단계에서 작성한 속도모델을 수정하여 초기 모델로 한다. 모델 수정은 관심대상 부분만을 작은 크기의 균일격자로 재구성하는 것이다. 기준조사 토모그램을 2차 조사자료 역산의 초기 속도모델로 사용하였다. 속도변화는 공동대 부근에서만 예상되므로 그 이외 부분의 속도는 기준 토모그램과 동일하게 고정시키고 역산을 수행하였다.

  • PDF

Flash 3D 재구성을 적용한 뇌 혈류 부하 단층 촬영 시 LEAP 검출기의 적용에 관한 연구: One Day Subtraction Method (The Study about Application of LEAP Collimator at Brain Diamox Perfusion Tomography Applied Flash 3D Reconstruction: One Day Subtraction Method)

  • 최종숙;정우영;류재광
    • 핵의학기술
    • /
    • 제13권3호
    • /
    • pp.102-109
    • /
    • 2009
  • 목적 : Siemens사의 Flash 3D(Pixon(R) method, 3D OSEM)는 검사 시간을 단축하면서 재구성을 통해 영상의 질을 높일 수 있도록 개발된 소프트웨어 프로그램으로써 핵의학 단층 촬영 시 유용하게 적용되고 있는 영상처리기법이다. 그러나 감산된 영상을 Flash 3D로 재구성하여 시행하는 뇌 혈류 부하 검사 시에 영상 획득시간을 짧게 하여 검사를 시행하면 재구성된 감산 영상의 신호 대 잡음비가(SNR, signal to noise ratio) 기저 영상에 비해 낮아지는 문제점이 있었다. 감산 영상의 SNR을 높이기 위해 LEAP 검출기를 사용하였고, 뇌혈관의 해상력보다는 혈관 확장의 예민도에 더 중점을 두었다. 본 실험은 뇌혈관 부하 단층 촬영 시 LEAP 검출기의 적용 가능성을 확인하고, Flash 3D를 이용한 적정 수준의 재구성 매개 변수를 파악하는 데 목적이 있다. 실험재료 및 방법 : (1) 팬텀 평가: $^{99m}Tc$을 넣은 Hoffman 3D Brain $Phantom^{TM}$을 이용하였다. LEAP와 LEHR 검출기로 첫 번째 영상을(부하 영상에 해당) 획득하고 $^{99m}Tc$의 반감기인 6시간 후 동일한 방법으로 두 번째 영상을(기저 영상에 해당) 획득하였다. 또한, 각각의 기저 영상과 감산 영상의 SNR 및 백질과 회백질의 비를 측정하였다. (2) 환자 영상의 평가: 2008년 5월부터 2009년 1월까지 LEAP 검출기로 촬영하여 정상으로 판독된 15명과 LEHR 검출기로 촬영하여 정상으로 판독된 13명의 환자를 대상으로 영상을 정성분석 하였다. Phantom에서 얻은 재구성 매개 변수를 대입하여 평가하였다. 하루 검사 프로토콜로 시행하였으며 기저에서 925 MBq, 부하에서 925 MBq의 $^{99m}Tc$-ECD를 투여하였다. 결과 : (1) 팬텀 평가: 각 검출기에서 획득한 계수치를 측정한 결과 LEHR 기저에서는 41~46 kcount, 부하에서 79~90 kcount, 감산에서 40~47 kcount가 측정되었다. LEAP의 경우 기저에서 102~113 kcount, 부하에서 188~210 kcount, 감산에서 94~103 kcount가 측정되었다. LEHR 감산 영상의 SNR은 LEHR 기저 영상과 비교하면 37% 감소하여 나타났고, LEAP 감산 영상의 SNR은 LEAP 기저 영상과 비교하면 17% 감소하여 나타났다. 회백질과 백질의 비는 LEHR 기저에서 2.2:1 감산에서 1.9:1로 측정되었고, LEAP 기저에서는 2.4:1 감산에서 2:1로 측정되었다. (2) 환자 영상의 평가: LEHR 검출기로 획득한 계수는 기저에서 대략 40~60 kcount, 부하에서 80~100 kcount 사이였다. 기저 및 부하 영상은 FWHM을 7 mm로 (타 장비의 Cutoff에 해당), 감산 영상은 FWHM을 11 mm로 설정하는 것이 적절하였다. LEAP는 기저에서 대략 80~100 kcount, 부하에서 180~200 kcount로 측정되었다. LEAP 영상은 기저 및 부하에서 FWHM을 5 mm로, 감산에서 7 mm로 설정해야 영상의 흐림을 줄일 수 있었다. 기저 및 부하 영상은 LEHR 영상이 LEAP 영상보다 해상력이 우수했다. 그러나 감산 영상의 경우 팬텀 실험과 같이 LEHR 영상의 SNR이 떨어져 영상이 거칠게 보였다. 감산 영상은 LEAP 영상이 LEHR 영상에 비해 SNR 및 예민도가 높게 평가되었다. LEHR과 LEAP 검출기의 모든 영상에서 subset과 iteration은 8회가 적절하였다. 결론 : LEAP 검출기를 이용해 적정 수준의 필터를 사용함으로써 SNR을 높여 보다 선명한 감산 영상을 획득할 수 있게 되었다. 하루 검사 프로토콜을 적용하여 Flash 3D로 재구성하는 경우, 보다 나은 감산 영상을 얻기 위해 LEAP 검출기의 적용을 고려해 볼 수 있을 것으로 판단된다.

  • PDF