• 제목/요약/키워드: High Fatigue Load

검색결과 333건 처리시간 0.02초

構造용高炭素鋼材 의 高溫 低 사이클 피勞擧動 에 關한 硏究 (A Study on Low-Cycle Fatigue Behavior at Elevated Temperature of High Carbon Steel Used For Structural Purpose)

  • 옹장우;김재훈
    • 대한기계학회논문집
    • /
    • 제6권2호
    • /
    • pp.101-106
    • /
    • 1982
  • This study was undertaken to determine tensile properties and low-cycle fatigue behavior of 0.6%C high carbon steel used of structural purposes at temperatures up to 500.deg.C. In the low-cycle fatigue test the upper limit was decided by elongation(i.e. the total strain range), while the lower limit was defined by the load (i.e. zero load). The following results were obtained. Both, the ultimate tensile strength and low-cycle fatigue resistance attain the maximum values near 250.deg.C. Above this temperature the values decrease rapidly as the temperature increases. The low-cycle fatigue resistance decreases whenever there is an increase of the total strain range. Because the hardness of cycle fatigued specimen correlates cyclic hardening and cyclic softening, therefore the hardness of cycle fatigued specimen is smaller than that of the nonfatigued specimen at room temperature and 500.deg.C but much larger than the hardness of the nonfatigued specimen near 250.deg.C.

하이브리드섬유보강 고강도콘크리트의 피로거동에 관한 연구 (A Study on the Fatigue behavior of Hybrid Fiber Reinforced High Strength Concrete)

  • 김남욱;최고봉;김한상;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.127-135
    • /
    • 2005
  • 최근들어 콘크리트 구조물이 대형화, 고층화, 장대화 및 특수화 됨에 따라 고강도콘크리트의 사용이 요구되고 있으나 고강도콘크리트는 일반강도콘크리트 보다 취성적인 파괴거동을 나타내고 있다. 따라서 취성적인 파괴 특성을 개선하고 균열성장 저항성을 증진시키기 위하여 ACI 363 위원회에서는 섬유보강콘크리트의 사용을 추천하고 있다. 한편, 교량 및 콘크리트 포장 등은 공용기간중에 적어도 수백만회 이상의 반복하중을 받고 있어 피로하중이 지배적이나 이에 대한 피로거동 및 피로강도의 규명이 어려운 실정이다. 본 연구에서는 하이브리드섬유보강 고강도콘크리트의 피로거동과 피로강도를 규명하기 위하여 정적 및 피로시험으로부터 구한 반복회수와 중앙처짐과의 관계를 비교분석 하였으며 S-N선도로부터 피로강도식을 제안하였다.

배기계 용접이음의 고온피로강도 (High Temperature Fatigue Strength of the Welded Joint in Exhaust System)

  • 주석재;이한용;남궁규완
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.1028-1034
    • /
    • 2008
  • The exhaust systems are usually subjected to vibration or shock at high temperatures. The high temperature fatigue tests of the exhaust systems are rarely performed in domestic industries due to limited number of test facility and high test costs. In this paper, the high temperature fatigue test of some part of the exhaust system, not the whole system, is carried out. The resonator located at the central range is heated in the cylindrical electric furnace and the alternating load is applied on the end of the pipe welded to the resonator. The high temperature fatigue strength of the welded joint is obtained. The location of the fatigue crack is different to that in room temperature.

직류전위차법을 이용한 점용접부의 피로수명 평가 (Fatigue Life Evaluation of Spot Weldment Using DCPDM)

  • 유효선;이송인;권일현;안병국
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.58-64
    • /
    • 2001
  • The initiation and propagation lives of fatigue crack were studied for spot weldments composed of cold rolled steel plates(SPC$\times$SPC) and galvanized steel plates(GA$\times$GA) using DC potential drop method(DCPDM). Through the various test results, it was known that the fatigue crack initiation and propagation behaviors in all specimens could be definitely detected by DCPDM. The fatigue crack initiation life( $N_{i}$) detected by DCPDM in SPC$\times$SPC and GA$\times$GA spot weldments increased as the welding current and the nugget diameter( $N_{d}$) increased. The fatigue crack propagation life($\Delta$ $N_{f-i}$) declined as the difference of $N_{i}$ and the fatigue fracture life( $N_{f}$) also increased according to the decrease of fatigue load, $\Delta$P and the increase of nugget diameter. In the same spot weldments, the increase of nugget diameter came to increase fatigue crack propagation life owing to a decrease of stress concentration in front of nugget, especially the increasing extent for GA$\times$GA spot weldment was very high. In the welding current 6kA, $N_{f}$ for GA$\times$GA spot weldment decreased more than that of SPC$\times$SPC specimen due to zinc layer coated in steel plate and undersized nugget diameter. On the other hand, in 8kA and 10kA, the GA$\times$GA spot weldment showed higher $N_{f}$ in spite of lower $N_{i}$, than that of SPC$\times$SPC specimen except 3,000N fatigue load.ue load. load.d.

  • PDF

구조응력을 이용한 하중 전달형 십자 양면 비대칭 필렛 용접 시험편의 피로강도 평가 (Fatigue Assessment of Load-carrying Asymmetric Double Bevel Cruciform Welded Joints using Structural Stress Approach)

  • 김성민;김영남;이승현;김명현
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.86-91
    • /
    • 2012
  • Fatigue tests and analyses were carried out to investigate fatigue strength and crack initiation point of load-carrying asymmetric double bevel cruciform welded joints. Mesh-insensitive structural stress approach was adopted to estimate high precise fatigue life and crack initiation point. Two different case material and weld shape were considered in this study. Results of fatigue tests and analyses were compared and discussed in consideration of applicability of structural stress approach as the reliable fatigue assessment method of cruciform welded joints.

원전 안전 3등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 굽힘 피로특성 평가 (Investigation of Bending Fatigue Behaviors of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants)

  • 김종성;이영주;오영진
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.40-44
    • /
    • 2015
  • The fatigue behavior of thermal butt fusion in safety class III high-density polyethylene (HDPE) buried piping for nuclear power plants was investigated using load-controlled bending fatigue on four-point bend test specimens. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low- and medium-cycle fatigue regions while having a negligible effect in the high-cycle fatigue regions.

실시간 성형하중 계측을 통한 냉간단조 금형수명 정량예측 정밀도 향상 연구 (A Study on Improving the Precision of Quantitative Prediction of Cold Forging Die Life Cycle Through Real Time Forging Load Measurement)

  • 서영호
    • 소성∙가공
    • /
    • 제30권4호
    • /
    • pp.172-178
    • /
    • 2021
  • The cold forging process induces material deformation in an enclosed space, generating a very high forging load. Therefore, it is mainly designed as a multi-stage process, and fatigue failure occurs in forging die due to cyclic load. Studies have been conducted previously to quantitatively predict the fatigue limit of cold forging dies, however, there was a limit to field application due to the large error range and the need for expert intervention. To solve this problem, we conducted a study on the introduction of a real-time forging load measurement technology and an automated system for quantitative prediction of die life cycle. As a result, it was possible to reduce the error range of the quantitative prediction of die life cycle to within ±7%, and it became possible to use the die life cycle calculation algorithm into an automated system.

사용반복하중에 대한 강섬유철근콘크리트 부재의 피로거동 (Fatigue Behavior of SFRC Elements under High Cyclic Loading)

  • 강보순;황성춘;오병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.431-438
    • /
    • 2001
  • Fatigue behavior of reinforced concrete(RC) and steel fiber reinforced concrete(SFRC) elements has been experimentally investigated. Fatigue behavior influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and load ratio $P_{u}$ $P_{o}$. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack widths and increases stiffness, and thus enhances the behavior in serviceability limit states also for high cyclic fatigue loadingngng

  • PDF

DURABILITY IMPROVEMENT OF A CYLINDER HEAD IN CONSIDERATION OF MANUFACTURING PROCESS

  • Kim, B.;Chang, H.;Lee, K.;Kim, C.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.243-248
    • /
    • 2007
  • The durability of a cylinder head is influenced by the thermal and mechanical history during the manufacturing process, as well as engine operation. In order to improve the durability of cylinder head, both load from engine operation and the preload conditions from the manufacturing process must be considered. The aluminum cylinder head used for a HSDI diesel engine is investigated to reduce the possibility of high cycle fatigue crack in this study. FE analysis is performed to elucidate the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. Two separate approaches to increase the durability of the cylinder head are discussed: reducing load from engine operation and re-arranging preload conditions from the manufacturing process at the critical location of the cylinder head. Local design changes of the cylinder head and modification of pretension load in the cylinder head bolt were investigated using FE analysis to relieve load at the critical location during engine operation. Residual stress formed at the critical location during the manufacturing process is measured and heat treatment parameters are changed to re-arrange the distribution of residual stress. Results of FE analysis and experiments showed that thorough consideration of the manufacturing process is necessary to enhance the durability of the cylinder head.

용접구조물 요접토우부의 잔류응력이 피로강도에 미치는 영향 평가 (Evaluation of Influence on the Fatigue Strength of Residual Stresses at the Welded Toe of Welded Structure.)

  • 차용훈;김하식;김일수;성백섭
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.7-13
    • /
    • 2001
  • This Study is to investigate the influence of weld residual stresses on the fatigue crack growth behaviors in pressure ves-sel reinforcement. In order to perform this study, the automatically welded specimens are prepared. The material is ASTM A516 grade 60 steel used in pressure vessel mainly. For pad-on-plate of skip welding continuous welding and PWHT specimen, fatigue crack initiation is generally initiat-ed at weld starting and end toe zone, and ruptured at weld starting toe zone, Fatigue life if pad-on-plate continuous speci-men is increased more than that of pad-on-plate skip fillet welding specimene about 85% under low load, about 20% under high load, and decreased than that of two-pad continuous welding specimen about 85%. In da/dN-$\Delta$ Κ curve under low load, pad-on-plate skip fillet welding specimen showed retardation on the initial crack, and the fatigue crack growth rate at the low region of $\Delta$Κ greater specimene E(3.8{\times}10^{-6}$mm/cycle). And the fatigue life of welding specimen was smaller than that of PWHT specimen.

  • PDF