• Title/Summary/Keyword: High Cr Steel

Search Result 503, Processing Time 0.029 seconds

Effects of Carbon Content on the Weldability of B-Containing $620^{\circ}C$ Grade High Cr Ferritic Cast Steel for Turbine Casing (B 첨가 $620^{\circ}C$급 터빈 케이싱용 고Cr 페라이트계 주강의 용접성에 미치는 탄소함량의 영향)

  • Seo, Won-Chan;Bang, Kook-Soo;Chi, Byung-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.41-45
    • /
    • 2008
  • Effectsof carbon content on the weldability of B-containing 620 grade high Cr ferritic cast steels were investigated. Cast steel with lower carbon content of 0.07% showed lower HAZ hardness because of the formation of lower carbon martensite in HAZ. It also showed less solidification cracking susceptibility in weld metal because of the formation of delta ferrite. However, hot ductility showed no difference between cast steels with lower and higher carbon contents. Cast steel with lower carbon content showed greater HAZ softening after PWHT in the region heated between AC1 and AC3 because of its higher base metal hardness.

Temporal Brittleness of the Mod.9Cr-1Mo Steel (Mod.9Cr1Mo강에서 발생되는 일시적 취성현상)

  • Hur, Sung-Kang;Gu, Ji-Ho;Shin, Kee-Sam;He, Yincheng;Shin, Jong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.592-595
    • /
    • 2011
  • It is well known that modified 9Cr-1Mo steel has a low thermal expansion and high thermal conductivity with excellent high temperature properties compared to austenitic stainless steel. For these advantages, the steel is very popular for the boiler tube of thermal power plants. Normalizing is commonly utilized to obtain martensite in this steel, which shows an unusual toughness for martensite. However, some accidents related to this steel have been reported recently, opening the necessity for further study. As a particular behavior of the steel, an abrupt drop of the impact value has been identified upon tempering at 750$^{\circ}C$ for about 1 hour. It is well known that $Fe_3C$ forms during autotempering and turns to $Cr_2C$ at an early stage and then transforms to $Cr_{23}C_6$. In this study, the cause of the abrupt drop of the impact value was investigated with an impact test, microstructural observation, nanodiffraction and phase analyses using instruments such as optical and transmission electron microscopes (TEM) with an extraction carbon replica of the carbides. The analyses revealed that the $M_2C$ that formed when retained for about 1 hour at 750$^{\circ}C$ causes a drastic decrease in the mechanical properties. The sharp drop in mechanical properties, however, disappeared as the $M_2C$ transformed into $M_{23}C_6$ with longer retention.

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

A Study on the Characteristic Change of 2.25Cr-1Mo Steel Welds for Various Welding Processes (용접 공정에 따른 2.25Cr-1Mo강 용접이음부의 특성 변화에 관한 연구)

  • BANG HAN-SUR;OH CHONG-IN;BANG HEE-SUN;KIM HYUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.49-56
    • /
    • 2005
  • In spite of the merits of laser welding being able to obtain the high welding quality such as smaller width of melting and heat affected zone, smaller welding deformation and fine grains of weldment compared to arc welding, laser welding is mainly used in joining of thin steel parts of electronics industry. Laser welding is getting widely used in joining thick plate and special kinds of steel due to its high power. While the arc welding is still applied for 2.25Cr-1Mo steel which is the essential material of atomic power generation equipment, the laser welding is not yet applied despite its high quality. So it has a trial to a special case demanding high welding quality such as atomic power plant. Accordingly, in this research, the mechanical properties of weldments by arc and laser welding were investigated using FEM to confirm the applicability of laser welding to 2.25Cr-1Mo steel. The Charphy test was carried out to understand the effect on the fracture toughness of weldments. The results of examination and test of the mechanical properties showed the validity of this research.

The Effect of Mo and Cr addition on the Deep Drawability of Dual Phase Steel Sheets (이상조직강판의 성형특성에 미치는 Mo와 Cr첨가의 영향)

  • Han, Seong Ho;Ahn, Yeon Sang;Chin, Kwang Geun;Kim, In Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.713-724
    • /
    • 2008
  • The need to lower the weights of automotive vehicle and to improve the safety of cars has resulted in the development of high strength steels such as TRIP(Transformation Induced Plasticity) and DP (Dual Phase) steel. It is well known that the higher strength of steel shows the poorer press formability. Among the high strength steels, DP steel shows several good characteristics such as low yield ratio, high initial n value, high elongation, high bake hardenability and anti-aging property. However, there's a certain limit in application of DP steels to the automotive panel parts because their poor deep drawbility caused by martensite. In this study, the effect of alloying elements on the deep drawability and recrystallization texture in TS 440MPa grade DP steel with 0.015~0.02% carbon has been investigated on the base of SEM, TEM, XRD and EBSD analysis.

고탄소계 Cr-Ti 합금강 레일재의 용접성에 관한 기초연구

  • 강계명;송진태
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.54-61
    • /
    • 1990
  • A pilot production is made to the high carbon Cr-Ti alloy rail steels with slight quantity of Cr & Ti added to the eutectoid carbon steel. As a part of weldability of these alloy steels, SH-CCT diagram for welding is first applied to the high carbon Cr-ti alloy rail steel with 0.1wt% Ti. The microstructure, which will be appeared at the HAZ of Enclosed-arc welding of this alloy rail seel, is a single phase of pearlite. As a result of this, it shows that the welding condition of Enclosed-arc welding applied to this alloy rail steel is a good condition.

  • PDF

A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II) (12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II))

  • Kim, Chang-Hui;Seo, Hyun-Uk;Yoon, Kee-Bong;Park, Ki-Sung;Kim, Seoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF

Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments (Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동)

  • Heesan Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-186
    • /
    • 2023
  • Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

A study on the Fabrication of Graded-Boundary Ni-Cr/Steel Material by Laser Beam (레이저빔에 의한 계면경사 Ni-Cr/steel 재료 제조에 관한 연구)

  • 김재현;김도훈
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • For a development purpose of thick metal / metal Graded-Boundary Materials(GBM), a basic research on the fabrication of Ni-Cr/steel GBM was carried out by a laser beam and its mechanical properties and thermal characteristics were investigated. In order to produce a compositionally graded boundary region between substrate steel and added Ni-Cr alloy, a series of surface alloying treatments was performed with a high power CO$_2$ laser beam. Ni-Cr sheet was placed on a low carbon steel plate(0.18%C), and then a CO$_2$ laser beam was irradiated on the surface to produce a homogeneous alloyed layer. On this first surface-alloyed layer, another Ni-Cr sheet was placed and then the CO$_2$ laser beam was irradiated again to produce second surface-alloyed layer. Sequential repetitions of laser surface alloying treatment 4 times resulted in a graded-boundary region with the thickness of about 1.4mm. Simultaneous concentration profiles of different kinds of alloying elements(Ni and Cr) showed from 42%Ni, 45%Cr and 13%Fe on surface region to 0%Ni, 0%Cr and 99%Fe in substrate region. Also a thermal conductivity gradient resulted in graded-region and its value changed from 0.03㎈/cm s$\^{C}$ in surface region to 0.1㎈/cm s$\^{C}$ in substrate region. Microstructural observation showed that any visible root porosities and solidification shrinkage cracks were not formed in graded region between alloyed layer and substrate region during rapid cooling.

  • PDF

Study on Softening Characteristics of 9Cr-1Mo Steel Weldments for High Temperature and Pressure Vessels Application (고온고압장치 적용을 위한 9Cr-1Mo강 용접부의 연화특성에 관한 연구)

  • 이영호;이규천;윤의박;김기철
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.40-53
    • /
    • 1992
  • 고온고압장치(High Temperature and Pressure Vessels)의 적용을 위한 기초연구로서 9Cr-1Mo강 용접부의 연화특성에 대하여 검토하였다. 9Cr-1Mo 강재에 Bead-on-Plate용접을 실시한 후, 용접부의 기계적 성질과 그 현미경조직관찰 및 미세경도를 측정한 결과, As-Welded 및 용접 후열처리(PWHT)등의 조건에 관계없이 용접열향부의 변태역과 템퍼링역의 경계에서 모재의 경 도보다 낮은 경도값(연화역)을 나타내었으며 이러한 원인은 결정립계(Grain boundary)에 석출 되는 탄화물의 형성에 의한 뜨임 현상임이 판명되었다.

  • PDF