• 제목/요약/키워드: High Burnup Fuel

검색결과 102건 처리시간 0.033초

TECHNICAL RATIONALE FOR METAL FUEL IN FAST REACTORS

  • Chang, Yoon-Il
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.161-170
    • /
    • 2007
  • Metal fuel, which was abandoned in the 1960's in favor of oxide fuel, has since then proven to be a viable fast reactor fuel. Key discoveries allowed high burnup capability and excellent steady-state as well as off-normal performance characteristics. Metal fuel is a key to achieving inherent passive safety characteristics and compact and economic fuel cycle closure based on electrorefining and injection-casting refabrication.

Validation of Serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelín II VVER-1000 reactor

  • Garcia, Manuel;Vocka, Radim;Tuominen, Riku;Gommlich, Andre;Leppanen, Jaakko;Valtavirta, Ville;Imke, Uwe;Ferraro, Diego;Uffelen, Paul Van;Milisdorfer, Lukas;Sanchez-Espinoza, Victor
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3133-3150
    • /
    • 2021
  • This work deals with the validation of a high-fidelity multiphysics system coupling the Serpent 2 Monte Carlo neutron transport code with SUBCHANFLOW, a subchannel thermalhydraulics code, and TRANSURANUS, a fuel-performance analysis code. The results for a full-core pin-by-pin burnup calculation for the ninth operating cycle of the Temelín II VVER-1000 plant, which starts from a fresh core, are presented and assessed using experimental data. A good agreement is found comparing the critical boron concentration and a set of pin-level neutron flux profiles against measurements. In addition, the calculated axial and radial power distributions match closely the values reported by the core monitoring system. To demonstrate the modeling capabilities of the three-code coupling, pin-level neutronic, thermalhydraulic and thermomechanic results are shown as well. These studies are encompassed in the final phase of the EU Horizon 2020 McSAFE project, during which the Serpent-SUBCHANFLOW-TRANSURANUS system was developed.

HIGH BURNUP FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeong, Yong-Hwan;Kim, Keon-Sik;Bang, Je-Geon;Chun, Tae-Hyun;Kim, Hyung-Kyu;Song, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.21-36
    • /
    • 2008
  • High bum-up fuel technology has been developed through a national R&D program, which covers key technology areas such as claddings, $UO_2$ pellets, spacer grids, performance code, and fuel assembly tests. New cladding alloys were developed through alloy designs, tube fabrication, out-of-pile test and in-reactor test. The new Zr-Nb tubes are found to be much better in their corrosion resistance and creep strength than the Zircaloy-4 tube, owing to an optimized composition and heat treatment of the new Zr-Nb alloys. A new fabrication technology for large grain $UO_2$ pellets was developed using various uranium oxide seeds and a micro-doping of Al. The uranium oxide seeds, which were added to $UO_2$ powder, were prepared by oxidizing and heat-treating scrap $UO_2$ pellets. A $UO_2$ pellet containing tungsten channels was fabricated for a thermal conductivity enhancement. For the fuel performance analysis, new high burnup models were developed and implemented in a code. This code was verified by an international database and our own database. The developed spacer grid has two features of contoured contact spring and hybrid mixing vanes. Mechanical and hydraulic tests showed that the spacer grid is superior in its rodsupporting, wear resistance and CHF performance. Finally, fuel assembly test technology was also developed. Facilities for mechanical and thermal hydraulic tests were constructed and are now in operation. Several achievements are to be utilized soon by the Korea Nuclear Fuel and thereby contribute to the economy and safety of PWR fuel in Korea

BEHAVIORS OF MOLYBDENUM IN UO2 FUEL MATRIX

  • Ha, Yeong-Keong;Kim, Jong-Goo;Park, Yang-Soon;Park, Soon-Dal;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.309-316
    • /
    • 2011
  • Molybdenum is the most abundant fission product since its fission yield is equivalent to that of xenon, and it has a very special role in the chemistry of nuclear fuel because it influences the oxygen potential of $UO_2$ fuel. In this study, the distribution of molybdenum in spent $UO_2$ fuel specimens with 33.3, 41.0 and 57.6 GWd/tU burnup was measured by a LA-ICP-MS system and the reproducibility of the measured data was obtained. The Mo distribution was almost constant along the radius of a fuel except an increase at the periphery of the fuel. It showed a drop in reproducibility with relatively high deviation of measured values for the highest burnup fuel. To explain this, the state of molybdenum in a $UO_2$ matrix and its effect on the oxidation behavior of $UO_2$ were investigated. The low reproducibility was explained by the segregation of molybdenum, and the inhibition of oxidation by the molybdenum was also observed.

RESULTS OF THERMAL CREEP TEST ON HIGHLY IRRADIATED ZIRLO

  • Quecedo, M.;Lloret, M.;Conde, J.M.;Alejano, C.;Gago, J.A.;Fernandez, F.J.
    • Nuclear Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.179-186
    • /
    • 2009
  • This paper presents a thermal creep test under internal pressure and post-test characterization performed on high burnup (68 MWd/kgU) ZIRLO. This research has been done by the CSN, ENRESA, and ENUSA in order to investigate the behavior of advanced cladding materials in contemporary PWRs at higher burnup under dry cask storage conditions. Also, to investigate the hydride reorientation, the cool-down of the samples after the test has been done in a coordinated manner with the internal pressure. The creep results obtained are consistent with the expected behavior from reference CWSR material, Zr-4. During the test, the material retained significant ductility: one specimen leaked during the test at an engineering strain of the tube section of 17%; remarkably, the crack closed due to de-pressurization. Although significant hydride reorientation occurred during the cool-down under pressure, no specimen failed during the cool-down.

국내 금속겸용용기의 연소도 이득효과 적용 시 주요영향인자에 따른 정량적 핵임계 평가 (Quantitative Evaluation of Criticality According to the Major Influence of Applied with Burnup Credit on Dual-purpose Metal Cask)

  • 도호석;김태만;조천형
    • 방사성폐기물학회지
    • /
    • 제13권2호
    • /
    • pp.141-154
    • /
    • 2015
  • 경수로 사용후핵연료 수송/저장용기의 핵임계 해석은 사용후핵연료내의 악티나이드핵종 및 핵분열생성물 함유량에 대한 불확실성을 이유로 신연료로 가정된 가상의 연료를 선정하여 평가해오고 있다. 그러나 이러한 평가방법은 용기 설계 시 과도한 임계여유도를 유도하여 경제적 손실을 유발할 수 있는 단점이있다. 이와 같은 단점을 극복하기 위하여 최근 연소도이득효과(burnup credit, BUC)를 반영한 수송저장용기의 설계 및 상용화를 위한 연구가 추진되었다. 이에 본 연구에서는 한국원자력환경공단에서 개발중인 금속겸용용기를 대상으로 연소도 이득효과적용 시 핵임계 안전성(criticality safety)에 영향을 미칠 것으로 예상되는 '노심 운전인자', '축방향 연소도 분포', '오장전 사고상황'에 대하여 핵임계 평가를 수행하였다. 그 결과 노심운전인자 중 저농축, 고연소도일 때 비출력에 따른 핵임계 변화가 크게 평가되었으며, 고연소도 사용후핵연료에서 End effect가 양의 값을 나타내었다. 특히 오장전에 의한 유효증배계수는 최대 0.18467증가하였으므로, 연소도이득효과를 적용 할 경우 필수고려사항임을 확인하였다. 본 연구결과는 국내모델(금속겸용용기)의 연소도 이득효과 적용기술 개발 및 사용 후핵연료 장전 시 일어날 수 있는 오장전 사고를 방지하기 위한 운영절차 개발에 참고자료로 활용될 수 있다.

심지층 처분시스템 설계를 위한 사용후핵연료 현황 분석 및 예측 (Current Status and Projection of Spent Nuclear Fuel for Geological Disposal System Design)

  • 조동건;최종원;한필수
    • 방사성폐기물학회지
    • /
    • 제4권1호
    • /
    • pp.87-93
    • /
    • 2006
  • 제2차 전력수급기본계획에 의거 2017년까지 계획된 원자로만을 대상으로 심지층 처분시스템 설계 시 필요한 국내 사용후핵연료의 발생량, 제원적 특징, 초기농축도 및 방출연소도 등에 대하여 현재 및 미래 현황을 파악하고 예측하였다. 2057년까지 PWR 및 CANDU 사용후핵연료 발생량은 각각 20,500 및 14,800 MTU로 나타났다. 초기 농축도에 대해서는 4.5 wt.% 이하를 갖는 사용후핵연료가 96.5%를 차지하는 것으로 나타났다. 사용후핵연료의 평균 방출연소도는 90년대 후반에는 36 GWD/MUT 전도, 2000년대 초반에는 40 GWD/MTU를 나타냈으며, 2000년대 중 후반부터는 45 GWD/MTU가 될 것으로 나타났다. 광범위한 분석 및 예측 결과, 총 처분물량을 대표할 수 있는 가상적인 기준 사용후핵 연료는 16 6 한국표준형연료, 단면적 $21.4cm\times21.4cm$, 길이 453cm, 무게 672 kg, 초기 농축도 4.5 wt.%, 방출연소도 55 GWD/MTU로 나타났다.

  • PDF