• Title/Summary/Keyword: High Ankle shoes

Search Result 31, Processing Time 0.023 seconds

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

The Kinematic Analysis According to a Dancesport Heel-Shoes Type on Rumba Cucarachas Movement Change (댄스스포츠 구두 굽 유형에 따른 룸바 쿠카라차 동작 변화에 대한 운동학적 분석)

  • Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.125-135
    • /
    • 2006
  • This study was to analyze the effect of dancesport heel-shoes heights on Rumba Cucarachas Movement in terms of analysis, and to provide the essential information to decide the proper heel-shoes heights for individual. six female subjects participated in this study. Dependent variables were set and divided into the amount of movement regarding the velocity and angle of the right elbow, pelvis, ankle, and knee. The following conclusion was drawn blow. 1) Angle: We all appeared in 5, 7, 9cm heel height so that we were similar in a knee and elbow angle and no significantly. The plantar flexion appeared greatly as an ankle angle's shoe high and significantly. 2) Velocity: An elbow velocity all appeared in a three shoes so that it was similar. We speed fast speed some in a 7cm heel height. A knee velocity expressed fast speed some in a 5cm heel height. The pelvis velocity in a that it was similar. Generaly, The aspect to be a dancesport competition o'clock and aesthetic is the height. and the muscular strength train after we need the thing to choose suitable to the individual shoe height. It is logical that the decision of heel-shoes heights should be made by anthropometric and sport dynamic analysis in order to maximize the dynamic and aesthetic aspect of dance sport.

Effect of Shoe Heel Height on Standing Balance and Muscle Activation of Ankle Joint (하이힐 뒤굽 높이가 서기 균형 및 발목 근육 활성도에 미치는 영향)

  • Oh, Duck-Won;Chon, Seung-Chul;Shim, Jae-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.789-795
    • /
    • 2010
  • This study aimed to investigate the effect of differing heel height on static balance and muscle activation of ankle joint during standing. Twenty-one young females volunteered to participate in this study. To measure balance function and EMG activity of tibialis anterior and gastrocnemius muscles, the subjects were asked to perform 1-min standing with eyes open and closed state under 3 different heel heights: barefoot, 3cm, and 7cm each. During the standing, postural sway distance and area, and EMG activity of tibialis anterior and gastrocnemius muscles were significantly augmented with increasing heel height (p<0.05). For comparison between eyes open and closed in terms of postural sway area and EMG activity of tibialis anterior muscle, barefoot and 7cm height conditions respectively showed significant differences as well. The findings indicate that high-heeled shoes may have disadvantages in maintaining balance function because of extra-muscular effort of ankle joint. This study provides useful information that will inform future studies on how heel height affects muscle activity around the ankle joint in aspects of static and dynamic balance.

Lower Extremity Muscle Activity while Wearing High-heeled Shoes under Various Situations: A Therapeutic Perspective

  • Kim, Yu-Shin;Lim, Jong-Min;Ko, Na-Yeon;Yoon, Bum-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: To evaluate changes in lower extremity muscle activity caused by high heeled shoe wearing during normal, brisk, and upslope walking. Methods: Twenty healthy young women (age, $23.9{\pm}2.47$) participated in this study. Muscle activities of the tibialis anterior, peroneus longus, gastrocnemius lateralis, gastrocnemius medialis, soleus, hamstring, vastus lateralis, and vastus medialis while walking normally, walking briskly, and walking up a slope. Results: When walking normally, the peroneus longus, gastrocnemius lateralis, soleus, and vastus lateralis evidenced higher activity when high-heeled shoes were worn (p<0.05). During brisk walking, the peroneus longus and gastrocnemius lateralis exhibited higher activity (p<0.05). Although the peroneus longus and vastus lateralis exhibited higher activity when walking up an incline with high-heeled shoes, the activity levels of the tibialis anterior and gastrocnemius medialis were lower (p<0.05). Conclusion: The results of this study demonstrate that increased heel height substantially reduces muscle effort when walking up a slope. From a therapeutic perspective, it is possible that using high heeled shoes over a short period might enhance muscle activity of ankle evertor, although it can cause mediolateral muscle imbalances in the lower extremities.

A Study on Changes in Lower Limb Joint Angles during Stair Walking with High Heel

  • Park, Ji-Won;Kim, Yun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.6
    • /
    • pp.379-385
    • /
    • 2013
  • Purpose: The purpose of this study is to compare kinematics on lower limbs between stair walking with high heel and barefoot in healthy adult women. Methods: 18 healthy adult women were recruited in this study. The subjects performed stair ascent and descent with high heels and barefoot. The experiment was conducted in random order and repeated three times for each stair walking with high heels and barefoot. The movements of lower limb joints were measured and analyzed using a three-dimensional analysis system. Results: The ankle, knee, and hip flexion angles on the sagittal plane exhibited statistically significant differences between stair ascent and descent with high heels and barefoot. The pelvic forward tilt angles showed statistically significant differences only during stair ascent. The ankle inversion, hip abduction and pelvic lateral tilt angles on the frontal plane showed statistically significant differences between stair walking with high heels and barefoot. On the transverse plane, the hip rotation angles showed statistically significant differences between the high-heeled and barefoot gait during stair ascent and descent. However, the pelvic rotation angles showed no statistically significant differences. Conclusion: Therefore, wearing high-heeled shoes during stair walking in daily life is considered to influence lower limb kinematics due to the high heel, and thus poses the risks of pain, and low stability and joint damage caused by changes in the movement of lower limb joints.

The Effects of Range of Motion of Lower Limb on Gait time of Height of High Heeled Shoes in Gait (보행 시 하이힐 굽 높이에 따라 보행시간이 하지관절 가동범위에 미치는 영향)

  • Sul, Jeong-Dug;Woo, Byung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.206-213
    • /
    • 2020
  • The purpose of the study was to compare the differences among phases accoring to the gait time on the heel height during gait, investigate the effect on ROM of the lower limb on gait time. Ten female college students in their 20s participated in the study, and variables were calculated through 3D gait analysis on height of heel. As a statistical method, one-way ANOVA was performed for the differences between the three heel heights, and multiple regression analysis was performed to determine the effect of gait time on the ROM. As a result of the study, phase 2, the higher the heel, the longer the gait time, but phase 3, the higher the heel, the shorter the gait time. As a result of analyzing the effect of gait time on the ROM of the lower limb, in phase 2, the greater the ROM for the ankle and knee joint in 1 cm, and for the ankle joint in 5 cm, the longer the gait time. In phase 3, the greater the ROM for the hip joint in 1 cm, the longer the gait time, and the smaller the ROM for the ankle joint in 10 cm, the longer the gait time. Therefore, in the case of high-heeled shoes, it is suggested that the control of the ankle joint is important.

A comparison study for mask plantar pressure measures to the difference of shoes in 20 female (20대 여성의 신발종류에 따른 족저압 영역별 비교 연구)

  • Kim, Y.J.;Ji, J.G.;Kim, J.T.;Hong, J.H.;Lee, J.S.;Lee, H.S.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

The Study on the Foot Type of Female Farmers (여성 농업인 발 유형에 관한 연구)

  • Jung, Myoung-Sook;Hwang, Kyoung-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.62 no.1
    • /
    • pp.76-89
    • /
    • 2012
  • This study was performed to offer the basic data for the design of farm shoes. 265 Korean female farmers aging between the 40s to the 80s volunteered for this study and we measured 40 items on each foot with the 3D foot scanner. First, the differences between farmers' feet and non-farmers' feet were analyzed. Farmers' feet were thicker in the instep areas, but had lower arch height than non-farmers' feet. In addition, farmer's feet were tilted to the inside. Next, eight factors were extracted among the 40 measuring items, and the classification criteria of the foot shape was analyzed. The important factors were: size of foot length and volume of ankle, malleolus height and size, volume of the front part of ankle, medial & lateral ball width, and vertical size of foot. Third, three clusters according to the foot shapes were categorized by cluster analysis of eight factor scores. Foot type 1 was medium in foot length, big in thickness, large in lateral ball width, small in toe 1 angle, and tilted to the inside. Foot type 2 was long and slim, and big in toe 5 angle. Foot type 3 was short in foot length, medium in volume of the front part of ankle, large in medial ball width, and big in toe 1 angle. Despite its shortness, foot type 3 was thick and showed severe deformation in toe 1. Lastly, the frequency distributions of the foot types in each age group were analyzed. Female farmers of the forties showed high frequency in type 1 and other age groups showed high frequency in type 2. The older female farmers showed higher frequency of type 3.

Comparison of the Changes in the Activation of the Quadriceps Muscle based on the Plantar Flexion Degree of the Ankle Joint in Healthy Young Females during the Stand-to-Sit movement

  • Sung-Min Son
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.2
    • /
    • pp.53-57
    • /
    • 2023
  • Purpose: The purpose of this study was to compare the changes in the muscle activation of the quadriceps muscle (rectus femoris, vastus lateralis, vastus medialis) during the stand-to-sit (StandTS) movement according to the plantar flexion angle of the ankle joint. Methods: A total of 22 healthy young females participated in this study. During the StandTS under the three conditions (plantarflexion angle 0°, 20°, and 45° of the ankle), electromyography (EMG) data (% maximum voluntary iso¬metric contraction) of the rectus femoris, vastus lateralis, and vastus medialis were recorded using a wireless surface EMG system. Results: There was a significant difference in the muscle activation of rectus femoris, vastus lateralis, and vastus medialis according to the plantar flexion angle (0°, 20°, and 45°) of the ankle. The muscle activation of the quadriceps was the highest at a 45° angle of plantarflexion and the lowest at 0°. One-way repeated ANOVA was used to analyze the muscle activation data of the lower extremity muscles according to the angle of the ankle joint. Conclusion: Based on the results of our study, it was confirmed that the muscle activity of the quadriceps can be increased even in the StandTS movement, which involves the eccentric contraction of the quadriceps muscle. This suggests that maintaining a plantar flexion posture for a long time, say by wearing high-heeled shoes, can quickly cause muscle fatigue in the lower-limb muscles, which can cause a decrease in balance ability leading to falls.

Changes in the Plain Radiographic Parameters of the Forefoot with Heal Elevation - A Preliminary Report - (뒤꿈치 높임에 의한 전족부 단순 방사선 지표상의 변화 - 예비보고 -)

  • Lee, Woo-Chun;Jung, Hyun-Woo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.4 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • Purpose: To investigate the effect of heel elevation on the radiographic parameters of the forefoot. Materials and Methods: Forty feet in twenty-one adults were studied. Weight bearing dorsoplantar radiograph was taken with the foot on a flat surface and with the heel of the foot elevated by 5cm. Various parameters were measured and compared between the results with and without heel elevation. Result: The hallux valgus angle was increased by $5.0{\pm}3.5$ degrees with heel elevation and the change was statistically significant(p<0.01). There was no statistically significant changes in the other parameters. Conclusion: The results of this study suggest that high-heeled shoes might contribute in causing or aggravating the degrees of the hallux valgus.

  • PDF