• 제목/요약/키워드: High $T_{c}$ superconductor

검색결과 164건 처리시간 0.019초

극저온 냉동기로 냉각되는 이중전류도입선의 최적설계 (Optimal design of binary current leads cooled by cryogenic refrigerator)

  • 송성재;장호명
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

Properties Optimization for Perovskite Oxide Thin Films by Formation of Desired Microstructure

  • Liu, Xingzhao;Tao, Bowan;Wu, Chuangui;Zhang, Wanli;Li, Yanrong
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.715-723
    • /
    • 2006
  • Perovskite oxide materials are very important for the electronics industry, because they exhibit promising properties. With an interest in the obvious applications, significant effort has been invested in the growth of highly crystalline epitaxial perovskite oxide thin films in our laboratory. And the desired structure of films was formed to achieve excellent properties. $Y_1Ba_2Cu_3O_{7-x}$ (YBCO) superconducting thin films were simultaneously deposited on both sides of 3 inch wafer by inverted cylindrical sputtering. Values of microwave surface resistance R$_2$ (75 K, 145 GHz, 0 T) smaller than 100 m$\Omega$ were reached over the whole area of YBCO thin films by pre-seeded a self-template layer. For implementation of voltage tunable high-quality varactor, A tri-layer structured SrTiO$_3$ (STO) thin films with different tetragonal distortion degree was prepared in order to simultaneously achieve a large relative capacitance change and a small dielectric loss. Highly a-axis textured $Ba_{0.65}Sr_{0.35}TiO_3$ (BST65/35) thin films was grown on Pt/Ti/SiO$_2$/Si substrate for monolithic bolometers by introducing $Ba_{0.65}Sr_{0.35}RuO_3$ (BSR65/35) thin films as buffer layer. With the buffer layer, the leakage current density of BST65/35 thin films were greatly reduced, and the pyroelectric coefficient of $7.6\times10_{-7}$ C $cm^{-2}$ $K^{-1}$ was achieved at 6 V/$\mu$m bias and room temperature.

EPR SPECTRA OF Mn ION WITH TWO PHASES IN THE Y-Ba-Cu-Mn-O HIGH Tc SUPERCONDUCTOR

  • Kim, Seon-Ok;Rudowicz, Czeslaw;Lee, Soo-Hyung;Yu, Seong-Cho
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.782-785
    • /
    • 1995
  • In this paper, $Mn^{2+}$ ion was doped in Y-Ba-Cu-O as an EPR probe. The following samples were prepared by conventional solid-state reaction method : $YBa_{2}Cu_{2.96}Mn_{0.04}O_{7-\delta}$ (MN-I), annealed $YBa_{2}Cu_{2.96}Mn_{0.04}O_{7-\delta}$ (AMN) and $YBa_{2}Cu_{2.94}Mn_{0.06}O_{7-\delta}$ (MN-II). AMN sample was obtained from MN-I by annealing for 1 hr under the Ar gas atmosphere at $600^{\circ}C$. X-band (~9.05 GHz) EPR spectra were measured from 103 K to room temperature by employing a JES-RE3X spectroscopy with a $TE_{0.11}$ cylindrical cavity and 100 kHz modulation frequency. In MN-I we have observed only the $Cu^{2+}$ signal. The fact that no $Mn^{2+}$ signal was observed, in spite of $Mn^{2+}$ being a very sensitive EPR probe, indicates that most likely isolated $Mn^{2+}$ ions don't exist in the MN-I sample. Most probably $Mn^{2+}$ ions in the MN-I sample interact antiferromagnetically and hence are EPR silent. The AMN spectra of at room temperature and 103 K indicate not only the $Cu^{2+}$ signal but also an extra signal, which increases with decreasing temperature. It is suggested that the extra signal originates from Mn ions that were antiferromagnetically coupled before the annealing process. In MN-II, from 103 K to room temperature, also, the extra signal was observed together with the $Cu^{2+}$ signal. The extra signal in MN-II, however, decreases with decreasing temperature and nearly disappears at 103 K. The signal originates from Mn ions in impurity phases that include $Mn^{2+}$ ions. We suppose that there exist at least two $Mn^{2+}$ doped phases in Y-Ba-Cu-O. The $Mn^{2+}$ signal of one phase is undectable at all temperature and that of another phase decreases with decreasing temperature and disappears around 103 K.

  • PDF

고온 초전도체 YBa$_2 Cu_3O_{7-x}$와 YBa$_2Cu_4O_8$의 전자구조와 성질에 관한 연구 (Study on Electronic Structures and Properties in High $T_c\;YBa_2Cu_O_{7-x}\;and\;YBa_2Cu_4O_8$ Superconductors)

  • 손만식;하윤식;백우현;이기학
    • 대한화학회지
    • /
    • 제35권4호
    • /
    • pp.316-323
    • /
    • 1991
  • 초전도체 이트륨계 계열 중 임계온도 95 K인 YBa$_2Cu_3O_{7-x}$ 초전도계(123 system)와 80 K 인 YBa$_2Cu_4O_8$ 초전도계(124 system)의 차이점을 확장 Huckel 분자궤도론(EHT)으로 계산하였다. 123계와 124계의 layer와 chain에 대한 하전 Cu-O cluster 모델을 각각 계산한 다음 원자가 전자분포(Valence Electron Population, VEP), 환산 겹침분포(Reduced Overlap Population, ROP) 그리고 알짜 전하(net charge)를 비교하였다. 그 결과 123 및 124계의 layer에 있어서 구리원자의 원자가 전자는 d$_{x^2-y^2}$ 오비탈 보다는 d$_{z^2}$ 오비탈에 더 많이 분포되어 있음을 알 수 있었고, chain에 있어서 구리원자의 원자가 전자는 d$_{z^2}$ 오비탈보다는 d$_{y^2-z^2}$ 오비탈에서 더 많이 분포되어 있음을 알 수 있었다. 123계에 있어서 ROP는 Y 방향의 Cu(1)-O(2)보다 X 방향의 Cu(1)-O(1)가 더 크다는 것을 알 수 있었고, 124계에 있어서 layer의 ROP는 X 방향의 Cu(1)-O(1)보다 Y 방향의 Cu(1)-O(2)가 더 크다는 것을 알 수 있었다. 그러나 123 및 124 계에 있어서 chain의 ROP는 Y 방향의 Cu(2)-O(3)보다 Z 방향의 Cu(2)-O(4)가 더 크다는 것을 알 수 있었다. 123계의 layer에 존재하는 구리의 알짜 전하는 chain에 존재하는 구리의 알짜 전하보다 더 큰 반면 124계의 chain에 존재하는 구리의 알짜 전하는 layer에 존재하는 구리의 알짜 전하보다 더 크다는 것을 알 수 있었다.)-O(2)가 더 크다는 것을 알 수 있었다. 그러나 123 및 124 계에 있어서 chain의 ROP는 Y 방향의 Cu(2)-O(3)보다 Z 방향의 Cu(2)-O(4)가 더 크다는 것을 알 수 있었다. 123계의 layer에 존재하는 구리의 알짜 전하는 chain에 존재하는 구리의 알짜 전하보다 더 큰 반면 124계의 chain에 존재하는 구리의 알짜 전하는 layer에 존재하는 구리의 알짜 전하보다 더 크다는 것을 알 수 있었다.

  • PDF