국가연구개발사업 관련 데이터를 이용한 최신 연구동향 파악, 의미 있는 정보의 생산과 활용을 위해 국가R&D 정보 서비스에도 자동 분류 기술 적용이 요구되어 R&D과제의 연구분야를 자동 분류하고 추천하기 위한 연구를 진행했다. 2013~2020년 국가R&D 과제 데이터 약 45만 건을 수집하여 학습과 평가에 사용했다. 수집 데이터 중 유효한 데이터를 대상으로 데이터 전처리 및 분석, 실험을 통한 성능 분석 후 모델을 선정했다. 최적의 모델 조합 도출을 목적으로 Word2vec, GloVe, fastText 성능을 비교했다. 실험 결과, 과제정보의 필수 항목으로 사용되는 소분류만의 정확도는 90.11%이다. 이 모델은 국가과학기술표준분류 연구분야와 유사한 계층 구조를 가진 다른 분류체계의 자동 분류 연구에 활용 가능할 것으로 기대한다.
본 논문은 전기화재 통계의 신뢰성을 향상시키고 효율적인 전기화재 자료를 수집하기 위한 전기화재 원인분류의 개발에 관한 연구이다. 전기화재에 대한 잘못되거나 편향된 지식은 전기화재에 대한 형태 분류를 바뀌게 한다. 전기화재 원인분석에 있어 화재조사자들이 올바르게 보고서를 작성할 수 있는 표준화된 형식을 개발하는 것이 필요하다. 본 연구에서는 원인들간의 인과관계를 고려한 계층구조로 새롭게 개발된 전기화재 원인분류체계를 제안하였다. 그리고 제안된 분류체계는 전기화재 조사 및 통계에 사용될 수 있으며, 전기화재 진단의 오류를 최소화할 수 있다.
This paper aims at the statistical analysis of electrical fire and classification of electrical fire causes to collect electrical fires data efficiently. Electrical fire statistics are produced to monitor the number and characteristics of fires attended by fire fighters, including the causes and effects of fire so that action can be taken to reduce the human and financial cost of fire. Electrical fires make up the majority of fires in Korea(including nearly 30% of total fires according to recent figures), The incorrect and biased knowledge for electrical fires changed the classification of certain types of fires, from non-electrical to electrical. It is convenient and required to develop the standardized form that makes, in the assessment of the cause of electrical fires, the fire fighters directly ticking the appropriate box on the fire report form or making an assessment of a text description. Therefore, it is highly recommended to develop electrical fire cause classification and electrical fire assessment on the fire statistics in order to categorize and assess electrical fires exactly. In this paper newly developed electrical fire cause classification structure, which is well-defined hierarchical structure so that there are not any relationship or overlap between cause categories, is suggested. Also fire statistics systems of foreign countries are introduced and compared.
Objective: The purpose of this study is to suggest the hierarchical structure with three layers of input task, input interaction, and input device. Background: Understanding the input interaction is very helpful to design an interface design. Method: We made a model of three layered input structure based on empirical approach and applied to a gesture interaction in TV. Result: We categorized the input tasks into six elementary tasks which are select, position, orient, text, and quantify. The five interactions described in this paper could accomplish the full range of input interaction, although the criteria for classification were not consistent. We analyzed the Microsoft kinect with this structure. Conclusion: The input interactions of command, 4 way, cursor, touch, and intelligence are basic interaction structure to understanding input system. Application: It is expected the model can be used to design a new input interaction and user interface.
본 논문은 엔지니어링 문서에서 각 제목의 머리기호가 그 문서의 논리적 계층 구조를 표현한다는 점을 이용하여 문서 내 각 제목의 계층을 자동으로 분류하는 방법론을 제시하였다. 제시한 방법론은 일반 텍스트 문서에서 세부 제목을 추출하는 방법과 추출된 제목의 계층을 정의하는 방법으로 구성된다. 문서의 세부 제목은 문장의 맨 앞에 위치한 머리기호의 형태를 미리 정의된 머리기호 그룹과 비교하여 추출하며, 추출된 제목의 계층은 머리기호 형태의 변화에 따라 각 제목간의 상대적 위치를 파악함으로써 정한다. 제시된 방법론을 이용하여 일반 텍스트 문서를 세부 제목에 따라 구조화된 XML 문서로 변환하는 시범 모듈을 개발하였으며, 20개의 엔지니어링 문서를 대상으로 그 성능을 분석하였다.
Journal of the Korean Data and Information Science Society
/
제24권6호
/
pp.1429-1437
/
2013
빅 데이터 분석기법 중 비정형데이터 분석기법인 텍스트 마이닝 기법을 이용하여 기후변화 관련 식품분야 논문 초록에서 용어들의 출현빈도를 분석하였다. 이를 위하여 용어-문헌 행렬을 만들고, 용어들간의 비유사성 측도를 바탕으로 계층적 군집분석기법을 적용하여 문서들을 군집화하였다. 군집화된 문서들간의 상호 연관성과 군집별로 특정용어의 빈도를 파악하여 문서군집을 특정주제별로 분류하였다. 이러한 연구를 통하여 식품분야의 기후변화 관련 논문들의 추세와 관심주제어를 파악할 수 있었으며, 향후 기후변화 적응 및 대응 체계 로드맵 작성 시 연구 개발 기초 자료로 활용할 수 있을 것이다.
문서의 텍스트를 바탕으로 각 문서가 속한 분류를 찾아내는 문서 분류는 자연어 처리의 기본 분야 중 하나로 주제 분류, 감정 분류 등 다양한 분야에 이용될 수 있다. 문서를 분류하기 위한 신경망 모델은 크게 단어를 기본 단위로 다루는 단어 수준 모델과 문자를 기본 단위로 다루는 문자 수준 모델로 나누어진다. 본 논문에서는 문서를 분류하는 신경망 모델의 성능을 향상시키기 위하여 문자 수준과 단어 수준의 모델을 혼합한 신경망 모델을 제안한다. 제안하는 모델은 각 단어에 대하여 문자 수준의 신경망 모델로 인코딩한 정보와 단어들의 정보를 저장하고 있는 단어 임베딩 행렬의 정보를 결합하여 각 단어에 대한 특징 벡터를 만든다. 추출된 단어들에 대한 특징 벡터를 바탕으로, 주의(attention) 메커니즘을 이용한 순환 신경망을 단어 수준과 문장 수준에 각각 적용하는 계층적 신경망 구조를 통해 문서를 분류한다. 제안한 모델에 대하여 실생활 데이터를 바탕으로 한 실험으로 효용성을 검증한다.
본 논문은 기계학습 기법에 기반한 웹문서 자동분류 시스템의 성능을 높이기 위한 새로운 형태의 특징가공 기법을 제안한다. 제안 기법은 하이퍼텍스트 웹문서에 대한 자동분류를 효과적으로 수행하기 위해 하이퍼링크 관계를 활용하여 특징 집합을 확장시킨다. 웹문서는 하이퍼링크 관계를 통해 서로 연결된 구조를 가지며, 그 관계는 많은 경우 연관도가 높은 문서들 간에 존재한다. 이러한 링크 정보가 분류모델의 주요 인자가 되는 특징 집합의 질을 높이는 중요한 역할을 수행할 수 있다. 제안 기법의 기본 아이디어는 워드넷 온톨로지를 기반으로 분류 대상 문서와 인접 문서들에 포함된 단어(특징)들 간의 의미적 유사도를 평가함으로써 다수의 특징들로 구성된 추상화된 개념적 특징을 생성하는 것이다. 여기서 유사도 함수는 워드넷 안에서 특징들 간의 상/하위어 관계 정보를 정량적으로 계산하게 된다. 분류모델의 구축시 추상화된 개념 특징은 일반 특징과 동일하게 간주하여 보다 정확한 분류 모델을 구축하는데 기여한다. Web-KB 문서집합을 이용한 실험을 통해 제안 기법이 기존 기법 보다 우수함을 보였다.
본 논문은 연구 학습 주제 지식베이스를 통한 소셜컴퓨팅 지원에 관한 연구로 두 가지 하부 연구로 구성되었다. 첫 번째 연구는 다양한 학문분야에서 전자 도서관 이용자들의 연구 및 학습 주제를 추출하기 위해 분야별로 분류가 잘 되어 있는 NDLTD Union catalog의 석박사 학위 논문 (Electronic Theses and Dissertations : ETDs)을 분석하여 계층적 지식베이스를 구축하는 연구이다. 석박사 학위 논문 이외에 ACM Transactions 저널의 논문과 컴퓨터 분야 국제 학술대회 웹사이트도 추가로 분석하였는데 이는 컴퓨팅 분야의 보다 세분화된 지식베이스를 얻기 위해서이다. 계층적 지식베이스는 개인화 서비스, 추천시스템, 텍스트 마이닝, 기술기회탐색, 정보 가시화 등의 정보서비스와 소셜컴퓨팅에 유용하게 사용될 수 있다. 본 논문의 두 번째 연구 부분에서는 우리가 만든 계층적 지식기반을 활용하여 4개의 사용자 커뮤니티 마이닝 알고리즘 중에서 우리가 수행중인 소셜 컴퓨팅 연구, 즉 구성원간의 결합도에 기반한 추천시스템에 최상의 성능을 보이는 그룹핑 알고리즘을 찾는 성능 평가 연구 결과를 제시하였다. 우리는 이 논문을 통해서 우리가 제안하는 연구 학습 주제 데이터베이스를 사용하는 방법이 기존에 사용자 커뮤니티 마이닝을 위해 사용되던 비용이 많이 필요하고, 느리며, 개인정보 침해의 위험이 있는 인터뷰나 설문에 기반한 방법을 자동화되고, 비용이 적게 들고, 빠르고, 개인정보 침해 위험이 없으며, 반복 수행시에도 일관된 결과를 보여주는 방법으로 대체할 수 있음을 보이고자 한다.
기존의 문서 클러스터링 기법에는 k-means와 같이 수행속도가 우수한 기법과, 분류의 정확률이 우수한 계층적 집괴 클러스터링 기법이 있다. 두 기법은 각각 분류의 정확률 저하와 저속의 수행속도로서 상호 단점을 가지며, 새로운 문서를 삽입 할 때마다 문서 유사도를 재계산해야 하는 문제가 있다. 웹 정보의 특성은 잦은 문서의 추가를 통해 정보를 축적하는 것이다. 따라서 본 논문에서는 정확률이 우수한 계층적 집괴 클러스터링 기법을 기반으로 수행속도를 향상 시킬 수 있는 이행적 폐쇄 트리 기법을 제안하고, 또한 새로운 문서의 삽입과 삭제에 우수한 점증적인 클러스터링이 가능한 기법을 제안한다. 제안된 기법의 효율성을 검증하기 위하여 기존의 알고리즘과 정확률, 재현율, F-Measure, 수행속도에 대해 비교 평가 및 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.