• Title/Summary/Keyword: Hierarchical Clustering

Search Result 557, Processing Time 0.031 seconds

HIERARCHICAL CLUSTER ANALYSIS by arboART NEURAL NETWORKS and its APPLICATION to KANSEI EVALUATION DATA ANALYSIS

  • Ishihara, Shigekazu;Ishihara, Keiko;Nagamachi, Mitsuo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.195-200
    • /
    • 2002
  • ART (Adaptive Resonance Theory [1]) neural network and its variations perform non-hierarchical clustering by unsupervised learning. We propose a scheme "arboART" for hierarchical clustering by using several ART1.5-SSS networks. It classifies multidimensional vectors as a cluster tree, and finds features of clusters. The Basic idea of arboART is to use the prototype formed in an ART network as an input to other ART network that has looser distance criteria (Ishihara, et al., [2,3]). By sending prototype vectors made by ART to one after another, many small categories are combined into larger and more generalized categories. We can draw a dendrogram using classification records of sample and categories. We have confirmed its ability using standard test data commonly used in pattern recognition community. The clustering result is better than traditional computing methods, on separation of outliers, smaller error (diameter) of clusters and causes no chaining. This methodology is applied to Kansei evaluation experiment data analysis.

  • PDF

Comparisons on Clustering Methods: Use of LMS Log Variables on Academic Courses

  • Jo, Il-Hyun;PARK, Yeonjeong;SONG, Jongwoo
    • Educational Technology International
    • /
    • v.18 no.2
    • /
    • pp.159-191
    • /
    • 2017
  • Academic analytics guides university decision-makers to assign limited resources more effectively. Especially, diverse academic courses clustered by the usage patterns and levels on Learning Management System(LMS) help understanding instructors' pedagogical approach and the integration level of technologies. Further, the clustering results can contribute deciding proper range and levels of financial and technical supports. However, in spite of diverse analytic methodologies, clustering analysis methods often provide different results. The purpose of this study is to present implications by using three different clustering analysis including Gaussian Mixture Model, K-Means clustering, and Hierarchical clustering. As a case, we have clustered academic courses based on the usage levels and patterns of LMS in higher education using those three clustering techniques. In this study, 2,639 courses opened during 2013 fall semester in a large private university located in South Korea were analyzed with 13 observation variables that represent the characteristics of academic courses. The results of analysis show that the strengths and weakness of each clustering analysis and suggest that academic leaders and university staff should look into the usage levels and patterns of LMS with more elaborated view and take an integrated approach with different analytic methods for their strategic decision on development of LMS.

An Incremental Similarity Computation Method in Agglomerative Hierarchical Clustering

  • Jung, Sung-young;Kim, Taek-soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.579-583
    • /
    • 2001
  • In the area of data clustering in high dimensional space, one of the difficulties is the time-consuming process for computing vector similarities. It becomes worse in the case of the agglomerative algorithm with the group-average link and mean centroid method, because the cluster similarity must be recomputed whenever the cluster center moves after the merging step. As a solution of this problem, we present an incremental method of similarity computation, which substitutes the scalar calculation for the time-consuming calculation of vector similarity with several measures such as the squared distance, inner product, cosine, and minimum variance. Experimental results show that it makes clustering speed significantly fast for very high dimensional data.

  • PDF

A Clustered Dwarf Structure to Speed up Queries on Data Cubes

  • Bao, Yubin;Leng, Fangling;Wang, Daling;Yu, Ge
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.195-210
    • /
    • 2007
  • Dwarf is a highly compressed structure, which compresses the cube by eliminating the semantic redundancies while computing a data cube. Although it has high compression ratio, Dwarf is slower in querying and more difficult in updating due to its structure characteristics. We all know that the original intention of data cube is to speed up the query performance, so we propose two novel clustering methods for query optimization: the recursion clustering method which clusters the nodes in a recursive manner to speed up point queries and the hierarchical clustering method which clusters the nodes of the same dimension to speed up range queries. To facilitate the implementation, we design a partition strategy and a logical clustering mechanism. Experimental results show our methods can effectively improve the query performance on data cubes, and the recursion clustering method is suitable for both point queries and range queries.

A Design of Fuzzy Classifier with Hierarchical Structure (계층적 구조를 가진 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.355-359
    • /
    • 2014
  • In this paper, we proposed the new fuzzy pattern classifier which combines several fuzzy models with simple consequent parts hierarchically. The basic component of the proposed fuzzy pattern classifier with hierarchical structure is a fuzzy model with simple consequent part so that the complexity of the proposed fuzzy pattern classifier is not high. In order to analyze and divide the input space, we use Fuzzy C-Means clustering algorithm. In addition, we exploit Conditional Fuzzy C-Means clustering algorithm to analyze the sub space which is divided by Fuzzy C-Means clustering algorithm. At each clustered region, we apply a fuzzy model with simple consequent part and build the fuzzy pattern classifier with hierarchical structure. Because of the hierarchical structure of the proposed pattern classifier, the data distribution of the input space can be analyzed in the macroscopic point of view and the microscopic point of view. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Clustering Routing Algorithms In Wireless Sensor Networks: An Overview

  • Liu, Xuxun;Shi, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1735-1755
    • /
    • 2012
  • Wireless sensor networks (WSNs) are becoming increasingly attractive for a variety of applications and have become a hot research area. Routing is a key technology in WSNs and can be coarsely divided into two categories: flat routing and hierarchical routing. In a flat topology, all nodes perform the same task and have the same functionality in the network. In contrast, nodes in a hierarchical topology perform different tasks in WSNs and are typically organized into lots of clusters according to specific requirements or metrics. Owing to a variety of advantages, clustering routing protocols are becoming an active branch of routing technology in WSNs. In this paper, we present an overview on clustering routing algorithms for WSNs with focus on differentiating them according to diverse cluster shapes. We outline the main advantages of clustering and discuss the classification of clustering routing protocols in WSNs. In particular, we systematically analyze the typical clustering routing protocols in WSNs and compare the different approaches based on various metrics. Finally, we conclude the paper with some open questions.

Performance evaluation of principal component analysis for clustering problems

  • Kim, Jae-Hwan;Yang, Tae-Min;Kim, Jung-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.726-732
    • /
    • 2016
  • Clustering analysis is widely used in data mining to classify data into categories on the basis of their similarity. Through the decades, many clustering techniques have been developed, including hierarchical and non-hierarchical algorithms. In gene profiling problems, because of the large number of genes and the complexity of biological networks, dimensionality reduction techniques are critical exploratory tools for clustering analysis of gene expression data. Recently, clustering analysis of applying dimensionality reduction techniques was also proposed. PCA (principal component analysis) is a popular methd of dimensionality reduction techniques for clustering problems. However, previous studies analyzed the performance of PCA for only full data sets. In this paper, to specifically and robustly evaluate the performance of PCA for clustering analysis, we exploit an improved FCBF (fast correlation-based filter) of feature selection methods for supervised clustering data sets, and employ two well-known clustering algorithms: k-means and k-medoids. Computational results from supervised data sets show that the performance of PCA is very poor for large-scale features.

Practical Data Transmission in Cluster-Based Sensor Networks

  • Kim, Dae-Young;Cho, Jin-Sung;Jeong, Byeong-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.224-242
    • /
    • 2010
  • Data routing in wireless sensor networks must be energy-efficient because tiny sensor nodes have limited power. A cluster-based hierarchical routing is known to be more efficient than a flat routing because only cluster-heads communicate with a sink node. Existing hierarchical routings, however, assume unrealistically large radio transmission ranges for sensor nodes so they cannot be employed in real environments. In this paper, by considering the practical transmission ranges of the sensor nodes, we propose a clustering and routing method for hierarchical sensor networks: First, we provide the optimal ratio of cluster-heads for the clustering. Second, we propose a d-hop clustering scheme. It expands the range of clusters to d-hops calculated by the ratio of cluster-heads. Third, we present an intra-cluster routing in which sensor nodes reach their cluster-heads within d-hops. Finally, an inter-clustering routing is presented to route data from cluster-heads to a sink node using multiple hops because cluster-heads cannot communicate with a sink node directly. The efficiency of the proposed clustering and routing method is validated through extensive simulations.

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

Selection of Cluster Hierarchy Depth and Initial Centroids in Hierarchical Clustering using K-Means Algorithm (K-Means 알고리즘을 이용한 계층적 클러스터링에서 클러스터 계층 깊이와 초기값 선정)

  • Lee, Shin-Won;An, Dong-Un;Chong, Sung-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.4 s.54
    • /
    • pp.173-185
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, with a large number of variables, K-means has a time complexity that is linear in the number of documents, but is thought to produce inferior clusters. In this paper, Condor system using K-Means algorithm Compares with regular method that the initial centroids have been established in advance, our method performance has been improved a lot.