• Title/Summary/Keyword: Hierarchical Classification

Search Result 391, Processing Time 0.025 seconds

A Study on the EO-1 Hyperion's Optimized Band Selection Method for Land Cover/Land Use Map (토지피복지도 제작을 위한 초분광 영상 EO-1 Hyperion의 최적밴드 선택기법 연구)

  • Jang Se-Jin;Lee Ho-Nam;Kim Jin-Kwang;Chae Ok-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2006
  • The Land Cover/Land Use Map have been constructed from 1998, which has hierarchical structure according to land cover/land use system. Level 1 classification Map have done using Landsat satellite image over whole Korean peninsula. Level II classification Map have been digitized using IRS-1C, 1D, KOMPSAT and SPOT5 satellite images resolution-merged with low resolution color images. Level II Land Cover/Land Use Map construction by digitizing method, however, is consuming enormous expense for satellite image acquisition, image process and Land Cover/Land Use Map construction. In this paper, the possibility of constructing Level II Land Cover/Land Use Map using hyperspectral satellite image of EO-1 Hyperion, which is studied a lot recently, is studied. The comparison of classifications using Hyperion satellite image offering more spectral information and Landsat-7 ETM+ image is performed to evaluate the availability of Hyperion satellite image. Also, the algorithm of the optimal band selection is presented for effective application of hyperspectral satellite image.

Selection and Classification of Bacterial Strains Using Standardization and Cluster Analysis

  • Lee, Sang Moo;Kim, Kyoung Hoon;Kim, Eun Joong
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.463-469
    • /
    • 2012
  • This study utilized a standardization and cluster analysis technique for the selection and classification of beneficial bacteria. A set of synthetic data consisting of 100 individual variables with three characteristics was created for analysis. The three characteristics assigned to each independent variable were designated to have different numeric scales, averages, and standard deviations. The variables were bacterial isolates at random, and the three characteristics were fermentation products, including cell yield, antioxidant activity of culture, and enzyme production. A standardization method utilizing a standard normal distribution equation to record fermentation yields of each isolate was employed to weight their different numeric scales and deviations. Following transformation, the data set was analyzed by cluster analysis. The Manhattan method for dissimilarity matrix construction along with complete linkage technique, an agglomerative method for hierarchical cluster analysis, was employed using statistical computing program R. A total of 100 isolates were classified into groups A, B, and C. In a comparison of the characteristics of each group, all characteristics in groups A and C were higher than those of group B. Isolates displaying higher cell yield were classified as group A, whereas those isolates showing high antioxidant activity and enzyme production were assigned to group C. The results of the cluster analysis can be useful for the classification of numerous isolates and the preparation of an isolation pool using numerical or statistical tools. The present study suggests that a simple technique can be applied to screen and select beneficial microbes using the freely downloadable statistical computing program R.

Applicability of Geo-spatial Processing Open Sources to Geographic Object-based Image Analysis (GEOBIA)

  • Lee, Ki-Won;Kang, Sang-Goo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.379-388
    • /
    • 2011
  • At present, GEOBIA (Geographic Object-based Image Analysis), heir of OBIA (Object-based Image Analysis), is regarded as an important methodology by object-oriented paradigm for remote sensing, dealing with geo-objects related to image segmentation and classification in the different view point of pixel-based processing. This also helps to directly link to GIS applications. Thus, GEOBIA software is on the booming. The main theme of this study is to look into the applicability of geo-spatial processing open source to GEOBIA. However, there is no few fully featured open source for GEOBIA which needs complicated schemes and algorithms, till It was carried out to implement a preliminary system for GEOBIA running an integrated and user-oriented environment. This work was performed by using various open sources such as OTB or PostgreSQL/PostGIS. Some points are different from the widely-used proprietary GEOBIA software. In this system, geo-objects are not file-based ones, but tightly linked with GIS layers in spatial database management system. The mean shift algorithm with parameters associated with spatial similarities or homogeneities is used for image segmentation. For classification process in this work, tree-based model of hierarchical network composing parent and child nodes is implemented by attribute join in the semi-automatic mode, unlike traditional image-based classification. Of course, this integrated GEOBIA system is on the progressing stage, and further works are necessary. It is expected that this approach helps to develop and to extend new applications such as urban mapping or change detection linked to GIS data sets using GEOBIA.

Automatic Electrofacies Classification from Well Logs Using Multivariate Statistical Techniques (다변량 통계 기법을 이용한 물리검층 자료로부터의 암석물리학상 결정)

  • Lim Jong-Se;Kim Jungwhan;Kang Joo-Myung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.170-175
    • /
    • 1998
  • A systematic methodology is developed for the prediction of the lithology using electrofacies classification from wireline log data. Multivariate statistical techniques are adopted to segment well log measurements and group the segments into electrofacies types. To consider corresponding contribution of each log and reduce the computational dimension, multivariate logs are transformed into a single variable through principal components analysis. Resultant principal components logs are segmented using the statistical zonation method to enhance the quality and efficiency of the interpreted results. Hierarchical cluster analysis is then used to group the segments into electrofacies. Optimal number of groups is determined on the basis of the ratio of within-group variance to total variance and core data. This technique is applied to the wells in the Korea Continental Shelf. The results of field application demonstrate that the prediction of lithology based on the electrofacies classification works well with reliability to the core and cutting data. This methodology for electrofacies determination can be used to define reservoir characterization which is helpful to the reservoir management.

  • PDF

Cost Effective Mobility Anchor Point Selection Scheme for F-HMIPv6 Networks (F-HMIPv6 환경에서의 비용 효율적인 MAP 선택 기법)

  • Roh Myoung-Hwa;Jeong Choong-Kyo
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.265-271
    • /
    • 2006
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps: preprocessing, classification, and matching, in the classification, we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Characteristic Community Type Classification of Forest Vegetation in South Korea (우리나라의 산림식생에 대한 군락형 분류)

  • Yun, Chung-Weon;Kim, Hye-Jin;Lee, Byung-Chun;Shin, Joon-Hwan;Yang, Hee Moon;Lim, Jong Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.504-521
    • /
    • 2011
  • This study was carried out phytosociological forest community analysis, the sampled dada were collected and studied by 1,456 plots from 1993 to 2009 for 17 years in the 22 mountain area of South Korea. Four opposed species groups were classified and 10 vegetation units were divided as a result of forest vegetation classification. The 10 units were closely correlated with major environmental factors such as geological features, climatic conditions, topographical configurations, and etc. Therefore the forest vegetation of South Korea could be conclusively abstracted by 10 vegetation units and 7 eco-types.

Characteristics Detection of Hydrological and Water Quality Data in Jangseong Reservoir by Application of Pattern Classification Method (패턴분류 방법 적용에 의한 장성호 수문·수질자료의 특성파악)

  • Park, Sung-Chun;Jin, Young-Hoon;Roh, Kyong-Bum;Kim, Jongo;Yu, Ho-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.794-803
    • /
    • 2011
  • Self Organizing Map (SOM) was applied for pattern classification of hydrological and water quality data measured at Jangseong Reservoir on a monthly basis. The primary objective of the present study is to understand better data characteristics and relationship between the data. For the purpose, two SOMs were configured by a methodologically systematic approach with appropriate methods for data transformation, determination of map size and side lengths of the map. The SOMs constructed at the respective measurement stations for water quality data (JSD1 and JSD2) commonly classified the respective datasets into five clusters by Davies-Bouldin Index (DBI). The trained SOMs were fine-tuned by Ward's method of a hierarchical cluster analysis. On the one hand, the patterns with high values of standardized reference vectors for hydrological variables revealed the high possibility of eutrophication by TN or TP in the reservoir, in general. On the other hand, the clusters with low values of standardized reference vectors for hydrological variables showed the patterns with high COD concentration. In particular, Clsuter1 at JSD1 and Cluster5 at JSD2 represented the worst condition of water quality with high reference vectors for rainfall and storage in the reservoir. Consequently, SOM is applicable to identify the patterns of potential eutrophication in reservoirs according to the better understanding of data characteristics and their relationship.

Improving Hypertext Classification Systems through WordNet-based Feature Abstraction (워드넷 기반 특징 추상화를 통한 웹문서 자동분류시스템의 성능향상)

  • Roh, Jun-Ho;Kim, Han-Joon;Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.2
    • /
    • pp.95-110
    • /
    • 2013
  • This paper presents a novel feature engineering technique that can improve the conventional machine learning-based text classification systems. The proposed method extends the initial set of features by using hyperlink relationships in order to effectively categorize hypertext web documents. Web documents are connected to each other through hyperlinks, and in many cases hyperlinks exist among highly related documents. Such hyperlink relationships can be used to enhance the quality of features which consist of classification models. The basic idea of the proposed method is to generate a sort of ed concept feature which consists of a few raw feature words; for this, the method computes the semantic similarity between a target document and its neighbor documents by utilizing hierarchical relationships in the WordNet ontology. In developing classification models, the ed concept features are equated with other raw features, and they can play a great role in developing more accurate classification models. Through the extensive experiments with the Web-KB test collection, we prove that the proposed methods outperform the conventional ones.

A Noise-Tolerant Hierarchical Image Classification System based on Autoencoder Models (오토인코더 기반의 잡음에 강인한 계층적 이미지 분류 시스템)

  • Lee, Jong-kwan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This paper proposes a noise-tolerant image classification system using multiple autoencoders. The development of deep learning technology has dramatically improved the performance of image classifiers. However, if the images are contaminated by noise, the performance degrades rapidly. Noise added to the image is inevitably generated in the process of obtaining and transmitting the image. Therefore, in order to use the classifier in a real environment, we have to deal with the noise. On the other hand, the autoencoder is an artificial neural network model that is trained to have similar input and output values. If the input data is similar to the training data, the error between the input data and output data of the autoencoder will be small. However, if the input data is not similar to the training data, the error will be large. The proposed system uses the relationship between the input data and the output data of the autoencoder, and it has two phases to classify the images. In the first phase, the classes with the highest likelihood of classification are selected and subject to the procedure again in the second phase. For the performance analysis of the proposed system, classification accuracy was tested on a Gaussian noise-contaminated MNIST dataset. As a result of the experiment, it was confirmed that the proposed system in the noisy environment has higher accuracy than the CNN-based classification technique.

Distracted Driver Detection and Characteristic Area Localization by Combining CAM-Based Hierarchical and Horizontal Classification Models (CAM 기반의 계층적 및 수평적 분류 모델을 결합한 운전자 부주의 검출 및 특징 영역 지역화)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.439-448
    • /
    • 2021
  • Driver negligence accounts for the largest proportion of the causes of traffic accidents, and research to detect them is continuously being conducted. This paper proposes a method to accurately detect a distracted driver and localize the most characteristic parts of the driver. The proposed method hierarchically constructs a CNN basic model that classifies 10 classes based on CAM in order to detect driver distration and 4 subclass models for detailed classification of classes having a confusing or common feature area in this model. The classification result output from each model can be considered as a new feature indicating the degree of matching with the CNN feature maps, and the accuracy of classification is improved by horizontally combining and learning them. In addition, by combining the heat map results reflecting the classification results of the basic and detailed classification models, the characteristic areas of attention in the image are found. The proposed method obtained an accuracy of 95.14% in an experiment using the State Farm data set, which is 2.94% higher than the 92.2%, which is the highest accuracy among the results using this data set. Also, it was confirmed by the experiment that more meaningful and accurate attention areas were found than the results of the attention area found when only the basic model was used.