• Title/Summary/Keyword: Hidden object detection

Search Result 24, Processing Time 0.025 seconds

Realtime Smoke Detection using Hidden Markov Model and DWT (은닉마르코프모델과 DWT를 이용한 실시간 연기 검출)

  • Kim, Hyung-O
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • In this paper, We proposed a realtime smoke detection using hidden markov model and DWT. The smoke type is not clear. The color of the smoke, form, spread direction, etc., are characterized by varying the environment. Therefore, smoke detection using specific information has a high error rate detection. Dynamic Object Detection was used a robust foreground extraction method to environmental changes. Smoke recognition is used to integrate the color, shape, DWT energy information of the detected object. The proposed method is a real-time processing by having the average processing speed of 30fps. The average detection time is about 7 seconds, it is possible to detect early rapid.

Hidden Object Detection System using Parametric Array (파라메트릭 배열을 이용한 은폐 물체 탐지 시스템)

  • Lee, Kibae;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun;Cho, Jung Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.78-86
    • /
    • 2017
  • In this paper, we propose hidden object detection system using parametric array based on acoustic signal that is harmless to human body. A transmit signal of the proposed detection system uses a high directive chirp signal generated from parametric array phenomenon, which uses technique to improve a signal to noise (SNR) of a received signal and a distance resolution trough the dechirp processing. The transmit sensor array is constructed as $8{\times}2$ and has a horizontal beam width of $7^{\circ}$ and vertical beam width of $26^{\circ}$. To verify the detection and visualization of the proposed system, a 2-axis driving control system based on linear stage was constructed, and A-scan, B-scan, and C-scan experiments was addressed for hidden object. From experimental results, we detected and visualized the hidden bronze plate and pipe by cloth and the visualized shapes was confirmed. Especially, the obtained errors was $0.015m^2$ for bronze plate, and $0.046m^2$ for pipe.

Hidden Line Removal for Technical Illustration Based on Visualization Data (기술도해 생성을 위한 가시화 데이터 은선 제거 알고리즘)

  • Shim, Hyun-Soo;Choi, Young;Yang, Sang-Wook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.455-463
    • /
    • 2006
  • Hidden line removal(HLR) algorithms can be devised either in the image space or in the object space. This paper describes a hidden line removal algorithm in the object space specifically for the CAD viewer data. The approach is based on the Appel's 'Quantitative Invisibility' algorithm and fundamental concept of 'back face culling'. Input data considered in this algorithm can be distinguished from those considered for HLR algorithm in general. The original QI algorithm can be applied for the polyhedron models. During preprocessing step of our proposed algorithm, the self intersecting surfaces in the view direction are divided along the silhouette curves so that the QI algorithm can be applied. By this way the algorithm can be used for any triangulated freeform surfaces. A major advantage of this algorithm is the applicability to general CAD models and surface-based visualization data.

Improved Object Tracking using Surrounding Information Detection (주변정보 검출을 통한 개선된 객체추적 기법)

  • Cho, Chi-young;Kim, Soo-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.1027-1030
    • /
    • 2013
  • For the detection of objects in the videos, there are various ways that use the frequency transformation. In the videos, the images of objects could be changed slightly. Object detection methods using frequency transformation such as ASEF and MOSSE have the ability to renew the detection filter in order to deal with the change of object images. But these approaches are likely to fail the detection because the image changes often occur when they come out again after being hidden by other objects. What is worse, when they show up again, they appear in another place, not the original one. In this paper, a new proposal is present so that the detection can be carried out efficiently even when the images come out in other place, and the failure of the detection can be reduced.

  • PDF

Radar-based Security System: Implementation for Cluttered Environment

  • Lee, Tae-Yun;Skvortsov, Vladimir;Ka, Min-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.160-167
    • /
    • 2015
  • We present an experimental implementation of the inexpensive microwave security sensor that can detect both static and slowly moving objects in cluttered environment. The prototype consists of a frequency-modulated continuous wave radar sensor, control board or computer and software. The prototype was tested in a cluttered indoor environment. In case of intrusion or change of environment the sensor will give an alarm, determine the location of new object, change in its location and can detect a slowly moving target. To make a low-cost unit we use commercially available automotive radar and own signal processing techniques for object detection and tracking. The intruder detection is based on a comparison between current 'image' in memory and 'no-intrusion' reference image. The main challenge is to develop a reliable technique for detection of a relatively low-magnitude object signals hidden in multipath clutter echo signals. Various experimental measurements and computations have shown the feasibility and performance of the system.

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Jeon, Pil-Han;Park, Chan-Jun;Kim, Jin-Yul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.682-691
    • /
    • 2017
  • In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.

Vanishing point-based 3D object detection method for improving traffic object recognition accuracy

  • Jeong-In, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.93-101
    • /
    • 2023
  • In this paper, we propose a method of creating a 3D bounding box for an object using a vanishing point to increase the accuracy of object recognition in an image when recognizing an traffic object using a video camera. Recently, when vehicles captured by a traffic video camera is to be detected using artificial intelligence, this 3D bounding box generation algorithm is applied. The vertical vanishing point (VP1) and horizontal vanishing point (VP2) are derived by analyzing the camera installation angle and the direction of the image captured by the camera, and based on this, the moving object in the video subject to analysis is specified. If this algorithm is applied, it is easy to detect object information such as the location, type, and size of the detected object, and when applied to a moving type such as a car, it is tracked to determine the location, coordinates, movement speed, and direction of each object by tracking it. Able to know. As a result of application to actual roads, tracking improved by 10%, in particular, the recognition rate and tracking of shaded areas (extremely small vehicle parts hidden by large cars) improved by 100%, and traffic data analysis accuracy was improved.

Study On Masked Face Detection And Recognition using transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.294-301
    • /
    • 2022
  • COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

Improve object recognition using UWB SAR imaging with compressed sensing

  • Pham, The Hien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.76-82
    • /
    • 2021
  • In this paper, the compressed sensing basic pursuit denoise algorithm adopted to synthetic aperture radar imaging is investigated to improve the object recognition. From the incomplete data sets for image processing, the compressed sensing algorithm had been integrated to recover the data before the conventional back- projection algorithm was involved to obtain the synthetic aperture radar images. This method can lead to the reduction of measurement events while scanning the objects. An ultra-wideband radar scheme using a stripmap synthetic aperture radar algorithm was utilized to detect objects hidden behind the box. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to transmit and receive signal data of two conductive cylinders located inside the paper box. The results confirmed that the images can be reconstructed by using a 30% randomly selected dataset without noticeable distortion compared to the images generated by full data using the conventional back-projection algorithm.