• 제목/요약/키워드: Hidden Unit Clarification

검색결과 1건 처리시간 0.035초

인공 신경망에서 은닉 유닛 명확화를 이용한 효율적인 규칙추출 방법 (A Efficient Rule Extraction Method Using Hidden Unit Clarification in Trained Neural Network)

  • 이헌주;김현철
    • 컴퓨터교육학회논문지
    • /
    • 제21권1호
    • /
    • pp.51-58
    • /
    • 2018
  • 인공 신경망은 최근 다양한 분야에서 뛰어난 성능을 보여주고 있다. 하지만 인공 신경망이 학습한 지식이 정확히 어떤 내용인지를 사람이 파악하기 어렵다는 문제점이 존재하는데, 이를 해결하기 위한 방법 중 하나로 학습된 인공 신경망에서 규칙을 추출하는 방법들이 연구되고 있다. 본 연구에서는 학습된 인공 신경망으로부터 규칙을 추출하는 방법 중 하나인 ordered-attribute search(OAS) 알고리즘을 사용하여 인공 신경망으로부터 규칙을 추출해보고, 추출된 규칙을 개선하기 위해 규칙들을 분석하였다. 그 결과로 은닉 층의 출력값 분포가 OAS 알고리즘을 이용해 추출된 규칙의 정확도에 영향을 주는 것을 파악하였고, 은닉 유닛 명확화 기법을 통해 은닉 층 출력값을 이진화하여 효율적인 규칙을 추출할 수 있음을 제시하였다.