• 제목/요약/키워드: Hidden Markov models

검색결과 191건 처리시간 0.018초

은닉마코프모델을 이용한 이상징후 탐지 기법 (An Anomaly Detection based on Probabilistic Behavior of Hidden Markov Models)

  • 이은영;한찬규;최형기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.1139-1142
    • /
    • 2008
  • 인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.

한국어 연속음성 인식을 위한 단어 결합 모델링에 관한 연구 (A Study on Word Juncture Modeling for Continuous Speech Recognition of Korean Language)

  • 최인정;은종관
    • 한국음향학회지
    • /
    • 제13권5호
    • /
    • pp.24-31
    • /
    • 1994
  • 본 논문에서는 단어 조음결합의 음성학적 모델을 이용한 한국어 연속음성 인식에 관해 연구한다. 조음결합 현상에 의한 성능 감소를 줄이기 위해 단어내에서의 전이뿐만 아니라 단어간의 전이를 모델링하는 context-dependent (CD)단위를 사용한다. 모든 경우에서 각 단어의 첫 음소는 앞에 올 수 있는 모든 단어의 마지막 음소에 의해 지정되며, 각 단어의 마지막 음소도 유사한 방법으로 지정된다. Hidden Markov model (HMM) 파라미터들의 강인성을 개선하기 위해 공분산 행렬을 평활화한다. 또한 음성 단위들 사이의 분별력을 높이기 위해 position-dependent 단위를 사용한다. 실험 결과들은 개선된 조음결합 모델을 사용함으로서 intra-word 단위만을 사용하는 기본 인식 시스템에 비해 성능을 상당히 개선할 수 있음을 보여 주었다.

  • PDF

Online Recognition of Handwritten Korean and English Characters

  • Ma, Ming;Park, Dong-Won;Kim, Soo Kyun;An, Syungog
    • Journal of Information Processing Systems
    • /
    • 제8권4호
    • /
    • pp.653-668
    • /
    • 2012
  • In this study, an improved HMM based recognition model is proposed for online English and Korean handwritten characters. The pattern elements of the handwriting model are sub character strokes and ligatures. To deal with the problem of handwriting style variations, a modified Hierarchical Clustering approach is introduced to partition different writing styles into several classes. For each of the English letters and each primitive grapheme in Korean characters, one HMM that models the temporal and spatial variability of the handwriting is constructed based on each class. Then the HMMs of Korean graphemes are concatenated to form the Korean character models. The recognition of handwritten characters is implemented by a modified level building algorithm, which incorporates the Korean character combination rules within the efficient network search procedure. Due to the limitation of the HMM based method, a post-processing procedure that takes the global and structural features into account is proposed. Experiments showed that the proposed recognition system achieved a high writer independent recognition rate on unconstrained samples of both English and Korean characters. The comparison with other schemes of HMM-based recognition was also performed to evaluate the system.

MFCC-HMM-GMM을 이용한 근전도(EMG)신호 패턴인식의 성능 개선 (Performance Improvement of EMG-Pattern Recognition Using MFCC-HMM-GMM)

  • 최흥호;김정호;권장우
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.237-244
    • /
    • 2006
  • This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most typical feature in frequency domain, it should be reorganized to detect the features in EMG signal. And the dynamic aspects of EMG are important for a task, such as a continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most approaches. Thus, this paper proposes reorganized MFCC and HMM-GMM, which is adaptable for the dynamic features of the signal. Moreover, it requires an analysis on the most suitable system setting fur EMG pattern recognition. To meet the requirement, this study balanced the recognition-rate against the error-rates produced by the various settings when loaming based on the EMG data for each motion.

Duration HMM을 이용한 진핵생물 유전자 예측 프로그램 개발 (A Eukaryotic Gene Structure Prediction Program Using Duration HMM)

  • 태홍석;박기정
    • 미생물학회지
    • /
    • 제39권4호
    • /
    • pp.207-215
    • /
    • 2003
  • 주어진 염기서열에서 단백질로 코딩되는 영역을 예측하는 유전자 구조 예측은 유전자 annotation의 가장 핵심적인 부분으로 유전자 분석 및 유전체 프로젝트 전체에 큰 영향을 준다. 진핵생물의 유전자가 원핵생물의 유전자에 비해 더 복잡한 구조를 가지기 때문에 진핵생물의 유전자 구조 예측 모델 역시 원핵생물에 비해 다양하고 복잡한 모델로 구성되어 있다. 본 연구팀은 duration hidden markov model을 기본형태로 하여 진핵생물의 유전자 구조 예측 프로그램인 EGSP를 개발하였다. 이 프로그램은 각 생명체의 유전자 구조 예측에 필요한 파라메터를 생성하는 학습기능과, 이를 기반으로 핵산 서열을 입력으로 해서 단백질을 코딩하는 부위를 예측하여 출력하는 기능으로 구성되며, 최근의 프로그램들의 추세대로 복수 개 유전자 예측의 기능을 갖추고 있다. EGSP의 학습과 예측에 사용되는 각 파라메터의 전체 성능에 대한 효과 분석 등을 위해 여러 개 signal에 대한 개별 모델이 주는 효과 등을 분석하였다. 진핵생물의 유전자 구조 예측에 가장 많이 연구되는 human dataset을 이용하여 현재 개발된 유전자 구조 예측 프로그램인 GenScan과 GeneID, Morgan 등 보편적으로 사용되는 프로그램들과의 성능을 여러 가지 기준에서 비교한 결과, 본 프로그램이 실용성 있는 수준을 보여주는 것을 확인하였다. 그리고 진핵 미생물인 Saccharomyces cerevisiae로 성능을 테스트한 결과 만족할 만한 수준의 성능을 나타내는 것을 알 수 있었다.

HMM 기반 TTS와 MusicXML을 이용한 노래음 합성 (Singing Voice Synthesis Using HMM Based TTS and MusicXML)

  • 칸 나지브 울라;이정철
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.53-63
    • /
    • 2015
  • 노래음 합성이란 주어진 가사와 악보를 이용하여 컴퓨터에서 노래음을 생성하는 것이다. 텍스트/음성 변환기에 널리 사용된 HMM 기반 음성합성기는 최근 노래음 합성에도 적용되고 있다. 그러나 기존의 구현방법에는 대용량의 노래음 데이터베이스 수집과 학습이 필요하여 구현에 어려움이 있다. 또한 기존의 상용 노래음 합성시스템은 피아노 롤 방식의 악보 표현방식을 사용하고 있어 일반인에게는 익숙하지 않으므로 읽기 쉬운 표준 악보형식의 사용자 인터페이스를 지원하여 노래 학습의 편의성을 향상시킬 필요가 있다. 이 문제를 해결하기 위하여 본 논문에서는 기존 낭독형 음성합성기의 HMM 모델을 이용하고 노래음에 적합한 피치값과 지속시간 제어방법을 적용하여 HMM 모델 파라미터 값을 변화시킴으로서 노래음을 생성하는 방법을 제안한다. 그리고 음표와 가사를 입력하기 위한 MusicXML 기반의 악보편집기를 전단으로, HMM 기반의 텍스트/음성 변환 합성기를 합성기 후단으로서 사용하여 노래음 합성시스템을 구현하는 방법을 제안한다. 본 논문에서 제안하는 방법을 이용하여 합성된 노래음을 평가하였으며 평가결과 활용 가능성을 확인하였다.

GCM Ensemble을 활용한 추계학적 강우자료 상세화 기법 개발 (Development of Stochastic Downscaling Method for Rainfall Data Using GCM)

  • 김태정;권현한;이동률;윤선권
    • 한국수자원학회논문집
    • /
    • 제47권9호
    • /
    • pp.825-838
    • /
    • 2014
  • 정상성 마코프 연쇄 모형은 일강우모의 모형으로 광범위하게 이용되고 있다. 하지만 정상성 마코프 연쇄 모형의 기본가정은 통계학적 특성이 시간에 따라 변화하지 않는 것으로, 일강우모의 시에 평균 또는 분산의 경향적 변화를 효과적으로 반영할 수 없다. 이러한 문제점을 인지하여 본 연구에서는 연주기 및 계절변화에 대하여 우수한 모의 능력을 나타내는 GCM의 모의결과를 입력자료로 이용하여 일강우량을 모의하기 위한 통계학적 상세화(downscaling) 기법인 비정상성 은닉 마코프 모형을 개발하였다. 개발된 모형을 낙동강 유역에 존재하는 영주지점, 문경지점 및 구미지점의 관측강우량에 적용한 결과, 일단위 및 계절단위의 강우량의 통계적 특성을 기존 모형에 비하여 개선된 결과를 도출할 수 있었으며, 또한 개발된 모형은 극치강수량 복원에 있어서도 관측값과 보다 유사한 결과를 보여 주었다. 이러한 점에서 정확성이 확보된 GCM 계절예측자료가 입력자료로 NHMM 모형에 활용된다면 예측기반의 일강수 상세화 모형으로 활용될 수 있을 것으로 판단된다. 이와 더불어, 기후변화 시나리오 입력자료가 사용된다면 기후변화 상세화 모형으로서도 적용될 수 있을 것으로 사료된다.

회귀신경망 예측 HMM을 이용한 숫자음 인식에 관한 연구 (A Study on the Recognition of Korean Numerals Using Recurrent Neural Predictive HMM)

  • 김수훈;고시영;허강인
    • 한국음향학회지
    • /
    • 제20권8호
    • /
    • pp.12-18
    • /
    • 2001
  • 본문에서는 예측형 회귀신경망과 HMM (Hidden Markov Model)의 하이브리드 네트워크인 회귀신경망 예측 HMM을 구성하였다. 회귀신경망 예측 HMM은 예측형 회귀신경망을 HMM의 각 상태마다 예측기로 정의하여 일정치인 평균벡터 대신에 과거의 특징벡터의 영향을 받아 동적으로 변화하는 신경 망에 의한 예측치를 이용하므로 학습패턴 설정자체가 시변성을 반영하는 동적 네트워크의 특성을 가진다. 따라서 음성과 같은 시계열 패턴의 인식에 유리하다. 회귀신경망 예측 HMM은 예측형 회귀신경망의 구조에 따라 Elman망 예측 HMM과 Jordan망 예측 HMM으로 구분하였다. 실험에서는 회귀신경망 예측 HMM의 상태수를 4, 5, 6으로 증가시켜 각 상태 수별로 예측차수 및 중간층 유니트 수의 변화에 따른 인식성능을 조사하였다. 실험결과 평가용 데이터에 대하여 Elman망 예측 HMM은 상태수가 6이고, 예측차수가 3차, 중간층 유니트의 수가 15차원일 때, Jordan망 예측 HMM의 경우 상태수가 5이고, 예측차수가 3차, 중간층 유니트의 수가 10차원일 때 각각 98.5%로 우수한 결과를 얻었다.

  • PDF

A Penalized Spline Based Method for Detecting the DNA Copy Number Alteration in an Array-CGH Experiment

  • Kim, Byung-Soo;Kim, Sang-Cheol
    • 응용통계연구
    • /
    • 제22권1호
    • /
    • pp.115-127
    • /
    • 2009
  • The purpose of statistical analyses of array-CGH experiment data is to divide the whole genome into regions of equal copy number, to quantify the copy number in each region and finally to evaluate its significance of being different from two. Several statistical procedures have been proposed which include the circular binary segmentation, and a Gaussian based local regression for detecting break points (GLAD) by estimating a piecewise constant function. We propose in this note a penalized spline regression and its simultaneous confidence band(SCB) approach to evaluate the statistical significance of regions of genetic gain/loss. The region of which the simultaneous confidence band stays above 0 or below 0 can be considered as a region of genetic gain or loss. We compare the performance of the SCB procedure with GLAD and hidden Markov model approaches through a simulation study in which the data were generated from AR(1) and AR(2) models to reflect spatial dependence of the array-CGH data in addition to the independence model. We found that the SCB method is more sensitive in detecting the low level copy number alterations.

반복학습 음소모델을 이용한 핵심어 검출 시스템의 성능 향상 (Performance Enhancement of Keyword Spotting System Using Repeated Training of Phone-models)

  • 김주곤;임수호;이여송;김범국;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 춘계학술발표대회 논문집 제23권 1호
    • /
    • pp.65-68
    • /
    • 2004
  • 본 논문에서는 반복학습으로 음소모델을 강건하게 하여 음소기반 핵심어 검출 시스템의 성능을 개선하고자 하였다. 가변어휘 핵심어 검출 시스템은 인식 대상 핵심어의 추가와 변경이 용이하도록 모노폰 단위로 핵심어 모델과 필러 모델을 구성하였다. 핵심어 모델과 필러 모델은 동일한 음소모델을 이용하므로 각각의 음소 모델의 분별력 향상은 핵심어 검출 성능과 밀접한 관계에 있다. 따라서 본 논문에서는 음소 HMM(Hidden Markov Model)의 학습시에 반복 학습을 통하여 음소 모델을 강건하게 만든 후 핵심어 검출 실험을 수행하였다. 그 결과, 10회의 반복학습을 통하여 얻어진 음소 HMM을 이용한 핵심어 검출의 성능은 반복학습을 하지 않은 경우보다 핵심어 검출의 CA-CR 평균 성능이 $4\%$ 향상됨을 확인할 수 있었다.

  • PDF