인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.
본 논문에서는 단어 조음결합의 음성학적 모델을 이용한 한국어 연속음성 인식에 관해 연구한다. 조음결합 현상에 의한 성능 감소를 줄이기 위해 단어내에서의 전이뿐만 아니라 단어간의 전이를 모델링하는 context-dependent (CD)단위를 사용한다. 모든 경우에서 각 단어의 첫 음소는 앞에 올 수 있는 모든 단어의 마지막 음소에 의해 지정되며, 각 단어의 마지막 음소도 유사한 방법으로 지정된다. Hidden Markov model (HMM) 파라미터들의 강인성을 개선하기 위해 공분산 행렬을 평활화한다. 또한 음성 단위들 사이의 분별력을 높이기 위해 position-dependent 단위를 사용한다. 실험 결과들은 개선된 조음결합 모델을 사용함으로서 intra-word 단위만을 사용하는 기본 인식 시스템에 비해 성능을 상당히 개선할 수 있음을 보여 주었다.
In this study, an improved HMM based recognition model is proposed for online English and Korean handwritten characters. The pattern elements of the handwriting model are sub character strokes and ligatures. To deal with the problem of handwriting style variations, a modified Hierarchical Clustering approach is introduced to partition different writing styles into several classes. For each of the English letters and each primitive grapheme in Korean characters, one HMM that models the temporal and spatial variability of the handwriting is constructed based on each class. Then the HMMs of Korean graphemes are concatenated to form the Korean character models. The recognition of handwritten characters is implemented by a modified level building algorithm, which incorporates the Korean character combination rules within the efficient network search procedure. Due to the limitation of the HMM based method, a post-processing procedure that takes the global and structural features into account is proposed. Experiments showed that the proposed recognition system achieved a high writer independent recognition rate on unconstrained samples of both English and Korean characters. The comparison with other schemes of HMM-based recognition was also performed to evaluate the system.
This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most typical feature in frequency domain, it should be reorganized to detect the features in EMG signal. And the dynamic aspects of EMG are important for a task, such as a continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most approaches. Thus, this paper proposes reorganized MFCC and HMM-GMM, which is adaptable for the dynamic features of the signal. Moreover, it requires an analysis on the most suitable system setting fur EMG pattern recognition. To meet the requirement, this study balanced the recognition-rate against the error-rates produced by the various settings when loaming based on the EMG data for each motion.
주어진 염기서열에서 단백질로 코딩되는 영역을 예측하는 유전자 구조 예측은 유전자 annotation의 가장 핵심적인 부분으로 유전자 분석 및 유전체 프로젝트 전체에 큰 영향을 준다. 진핵생물의 유전자가 원핵생물의 유전자에 비해 더 복잡한 구조를 가지기 때문에 진핵생물의 유전자 구조 예측 모델 역시 원핵생물에 비해 다양하고 복잡한 모델로 구성되어 있다. 본 연구팀은 duration hidden markov model을 기본형태로 하여 진핵생물의 유전자 구조 예측 프로그램인 EGSP를 개발하였다. 이 프로그램은 각 생명체의 유전자 구조 예측에 필요한 파라메터를 생성하는 학습기능과, 이를 기반으로 핵산 서열을 입력으로 해서 단백질을 코딩하는 부위를 예측하여 출력하는 기능으로 구성되며, 최근의 프로그램들의 추세대로 복수 개 유전자 예측의 기능을 갖추고 있다. EGSP의 학습과 예측에 사용되는 각 파라메터의 전체 성능에 대한 효과 분석 등을 위해 여러 개 signal에 대한 개별 모델이 주는 효과 등을 분석하였다. 진핵생물의 유전자 구조 예측에 가장 많이 연구되는 human dataset을 이용하여 현재 개발된 유전자 구조 예측 프로그램인 GenScan과 GeneID, Morgan 등 보편적으로 사용되는 프로그램들과의 성능을 여러 가지 기준에서 비교한 결과, 본 프로그램이 실용성 있는 수준을 보여주는 것을 확인하였다. 그리고 진핵 미생물인 Saccharomyces cerevisiae로 성능을 테스트한 결과 만족할 만한 수준의 성능을 나타내는 것을 알 수 있었다.
노래음 합성이란 주어진 가사와 악보를 이용하여 컴퓨터에서 노래음을 생성하는 것이다. 텍스트/음성 변환기에 널리 사용된 HMM 기반 음성합성기는 최근 노래음 합성에도 적용되고 있다. 그러나 기존의 구현방법에는 대용량의 노래음 데이터베이스 수집과 학습이 필요하여 구현에 어려움이 있다. 또한 기존의 상용 노래음 합성시스템은 피아노 롤 방식의 악보 표현방식을 사용하고 있어 일반인에게는 익숙하지 않으므로 읽기 쉬운 표준 악보형식의 사용자 인터페이스를 지원하여 노래 학습의 편의성을 향상시킬 필요가 있다. 이 문제를 해결하기 위하여 본 논문에서는 기존 낭독형 음성합성기의 HMM 모델을 이용하고 노래음에 적합한 피치값과 지속시간 제어방법을 적용하여 HMM 모델 파라미터 값을 변화시킴으로서 노래음을 생성하는 방법을 제안한다. 그리고 음표와 가사를 입력하기 위한 MusicXML 기반의 악보편집기를 전단으로, HMM 기반의 텍스트/음성 변환 합성기를 합성기 후단으로서 사용하여 노래음 합성시스템을 구현하는 방법을 제안한다. 본 논문에서 제안하는 방법을 이용하여 합성된 노래음을 평가하였으며 평가결과 활용 가능성을 확인하였다.
정상성 마코프 연쇄 모형은 일강우모의 모형으로 광범위하게 이용되고 있다. 하지만 정상성 마코프 연쇄 모형의 기본가정은 통계학적 특성이 시간에 따라 변화하지 않는 것으로, 일강우모의 시에 평균 또는 분산의 경향적 변화를 효과적으로 반영할 수 없다. 이러한 문제점을 인지하여 본 연구에서는 연주기 및 계절변화에 대하여 우수한 모의 능력을 나타내는 GCM의 모의결과를 입력자료로 이용하여 일강우량을 모의하기 위한 통계학적 상세화(downscaling) 기법인 비정상성 은닉 마코프 모형을 개발하였다. 개발된 모형을 낙동강 유역에 존재하는 영주지점, 문경지점 및 구미지점의 관측강우량에 적용한 결과, 일단위 및 계절단위의 강우량의 통계적 특성을 기존 모형에 비하여 개선된 결과를 도출할 수 있었으며, 또한 개발된 모형은 극치강수량 복원에 있어서도 관측값과 보다 유사한 결과를 보여 주었다. 이러한 점에서 정확성이 확보된 GCM 계절예측자료가 입력자료로 NHMM 모형에 활용된다면 예측기반의 일강수 상세화 모형으로 활용될 수 있을 것으로 판단된다. 이와 더불어, 기후변화 시나리오 입력자료가 사용된다면 기후변화 상세화 모형으로서도 적용될 수 있을 것으로 사료된다.
본문에서는 예측형 회귀신경망과 HMM (Hidden Markov Model)의 하이브리드 네트워크인 회귀신경망 예측 HMM을 구성하였다. 회귀신경망 예측 HMM은 예측형 회귀신경망을 HMM의 각 상태마다 예측기로 정의하여 일정치인 평균벡터 대신에 과거의 특징벡터의 영향을 받아 동적으로 변화하는 신경 망에 의한 예측치를 이용하므로 학습패턴 설정자체가 시변성을 반영하는 동적 네트워크의 특성을 가진다. 따라서 음성과 같은 시계열 패턴의 인식에 유리하다. 회귀신경망 예측 HMM은 예측형 회귀신경망의 구조에 따라 Elman망 예측 HMM과 Jordan망 예측 HMM으로 구분하였다. 실험에서는 회귀신경망 예측 HMM의 상태수를 4, 5, 6으로 증가시켜 각 상태 수별로 예측차수 및 중간층 유니트 수의 변화에 따른 인식성능을 조사하였다. 실험결과 평가용 데이터에 대하여 Elman망 예측 HMM은 상태수가 6이고, 예측차수가 3차, 중간층 유니트의 수가 15차원일 때, Jordan망 예측 HMM의 경우 상태수가 5이고, 예측차수가 3차, 중간층 유니트의 수가 10차원일 때 각각 98.5%로 우수한 결과를 얻었다.
The purpose of statistical analyses of array-CGH experiment data is to divide the whole genome into regions of equal copy number, to quantify the copy number in each region and finally to evaluate its significance of being different from two. Several statistical procedures have been proposed which include the circular binary segmentation, and a Gaussian based local regression for detecting break points (GLAD) by estimating a piecewise constant function. We propose in this note a penalized spline regression and its simultaneous confidence band(SCB) approach to evaluate the statistical significance of regions of genetic gain/loss. The region of which the simultaneous confidence band stays above 0 or below 0 can be considered as a region of genetic gain or loss. We compare the performance of the SCB procedure with GLAD and hidden Markov model approaches through a simulation study in which the data were generated from AR(1) and AR(2) models to reflect spatial dependence of the array-CGH data in addition to the independence model. We found that the SCB method is more sensitive in detecting the low level copy number alterations.
본 논문에서는 반복학습으로 음소모델을 강건하게 하여 음소기반 핵심어 검출 시스템의 성능을 개선하고자 하였다. 가변어휘 핵심어 검출 시스템은 인식 대상 핵심어의 추가와 변경이 용이하도록 모노폰 단위로 핵심어 모델과 필러 모델을 구성하였다. 핵심어 모델과 필러 모델은 동일한 음소모델을 이용하므로 각각의 음소 모델의 분별력 향상은 핵심어 검출 성능과 밀접한 관계에 있다. 따라서 본 논문에서는 음소 HMM(Hidden Markov Model)의 학습시에 반복 학습을 통하여 음소 모델을 강건하게 만든 후 핵심어 검출 실험을 수행하였다. 그 결과, 10회의 반복학습을 통하여 얻어진 음소 HMM을 이용한 핵심어 검출의 성능은 반복학습을 하지 않은 경우보다 핵심어 검출의 CA-CR 평균 성능이 $4\%$ 향상됨을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.