• 제목/요약/키워드: Hidden Markov Model (HMM)

검색결과 453건 처리시간 0.022초

자율차량 안전을 위한 긴급상황 알림 및 운전자 반응 확인 시스템 설계 (A Design of the Emergency-notification and Driver-response Confirmation System(EDCS) for an autonomous vehicle safety)

  • 손수락;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.134-139
    • /
    • 2021
  • 현재 자율주행차량 시장은 3레벨 자율주행차량을 상용화하고 있으나, 여전히 운전자의 주의를 필요로 한다. 3레벨 자율주행 이후 4레벨 자율주행차량에서 가장 주목되는 부분은 차량의 안정성이다. 3레벨과 다르게 4레벨 이후의 자율주행차량은 운전자의 부주의까지 포함하여 자율주행을 실시해야 하기 때문이다. 따라서 본 논문에서는 운전자가 부주의한 상황에서 긴급상황을 알리고 운전자의 반응을 인식하는 자율차량 안전을 위한 긴급상황 알림 및 운전자 반응 확인 시스템을 제안한다. 긴급상황 알림 및 운전자 반응 확인 시스템은 긴급상황 전달 모듈을 사용하여 긴급상황을 텍스트화하여 운전자에게 음성으로 전달하며 운전자 반응 확인 모듈을 사용하여 긴급상황에 대한 운전자의 반응을 인식하고 운전 권한을 운전자에게 넘길지 결정한다. 실험 결과, 긴급상황 전달 모듈의 HMM은 RNN보다 25%, LSTM보다 42.86% 빠른 속도로 음성을 학습했다. 운전자 반응 확인 모듈의 Tacotron2는 deep voice보다 약 20ms, deep mind 보다 약 50ms 더 빨리 텍스트를 음성으로 변환했다. 따라서 긴급상황 알림 및 운전자 반응 확인 시스템은 효율적으로 신경망 모델을 학습시키고, 실시간으로 운전자의 반응을 확인할 수 있다.

신경회로망과 유전알고리즘을 이용한 근전신호 인식기법 (A Study on Electromyogram Signals Recognition Technique using Neural Network and Genetic Algorithms)

  • 신철규;이상민;이은실;권장우;장영건;홍승홍
    • 전자공학회논문지S
    • /
    • 제35S권11호
    • /
    • pp.176-183
    • /
    • 1998
  • 본 논문에서는 근전신호를 효과적으로 인식하기 위해 신경회로망에 유전알고리즘을 결합하여 근전신호를 인식하는 기법을 제안한다. 본 기법은 신경회로망이 내재한 단점들을 개선하여 근전신호의 인식률을 높이고 안정적인 인식을 행하는 것을 목표로 한다. 제안된 기법에서 유전알고리즘은 전역적인 탐색으로 신경회로망의 최적의 초기 연결강도를 선택하는데, 이로 인하여 학습속도 및 인식률이 향상하게 된다. 그리고 절대 적분치, 영교차수등의 특징벡터 이외에 히든 마르코프 모델로 전처리를 하여 시간적으로 변하는 근전신호의 특성을 입력패턴에 반영하였다. 6가지의 기본운동을 대상으로 행한 실험결과, 제안된 인식기법은 기존의 일반적인 신경회로망의 학습규칙을 이용하여 인식했을 때보다 학습속도와 인식률이 향상되었고, 국부최소점으로 수렴하는 경우가 없어 실험에 실패하지 않고 안정적으로 근전신호의 패턴을 인식하였다.

  • PDF

Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species

  • Nguyen, Thao Thi;Lee, Hyun-Hee;Park, Inmyoung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제34권1호
    • /
    • pp.11-22
    • /
    • 2018
  • Type VI secretion system (T6SS) has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs) are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL) were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM) of T6SEs that possess markers for type VI effectors (MIX motif) (MIX T6SEs), 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.

방사 기저 함수 신경망을 이용한 3차원 얼굴인식 (3D face recognition based on radial basis function network)

  • 양욱일;손광훈
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.82-92
    • /
    • 2007
  • 본 논문에서는 3차원 얼굴인식을 위한 방사 기저 함수 신경망 기반의 새로운 전역적 형태 특징과 그 특징을 추출하는 방법을 제안한다. 방사 기저 함수 신경망은 방사 기저 함수들의 가중합으로써, 얼굴 형태 정보의 비선형성을 방사 기저 함수의 선형합으로 잘 표현한다. 이 논문에서는 얼굴의 가로 방향 프로파일을 학습된 방사 기저 함수 신경망에 적용시켰을 때 생성되는 가증치를 새로운 전역적 형태 특징으로 제안한다. 제안하는 전역적 형태 특징의 경우 국소적 특징의 특성을 가지며, 일반적인 전역적 특징의 특성인 특징의 복잡도도 감소시킨다. 100명의 데이터베이스 영상과 100명에 대한 서로 다른 3개의 포즈를 포함하는 300개의 테스트 영상을 이용한 실험에서 제안하는 전역적 형태 특징과 은닉 마르코프 모델을 이용한 특징 비교를 통해서 94.7%의 인식률을 얻었다.

동적 베이스망 기반의 걸음걸이 분석 (Dynamic Bayesian Network-Based Gait Analysis)

  • 김찬영;신봉기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권5호
    • /
    • pp.354-362
    • /
    • 2010
  • 본 연구는 동적 베이스 망을 이용하여, 사람의 보행 동작을 보행 방향과 보행 자세로 분리하여 계층적으로 분석하는 방법을 제안한다. DBN의 일종인 FHMM을 기본 바탕으로 하여, 걸음걸이 동작 특성을 고려하여 순환 고리형 상태 공간 구조로 '보행 동작 디코더'(Gait Motion Decoder, GMD)를 설계한다. 기존 연구에는 보행자의 식별에만 치중을 하고 보행 방향의 변화, 관찰 각도에 제한적이거나 보행 동작에 대한 분석이 없었다. 반면에 본 연구에서는 동작과 자세를 적극적으로 표현하여 임의 방향의 보행, 방향의 변화, 보행 자세까지 인식할 수 있도록 하였다. 실험 결과 동작과 자세의 관점에서 걸음걸이 방향을 분석한 결과 96.5%의 방향 인식률을 기록하였다. 본 연구는 보행 동작을 방향과 보행 자세로 계층적으로 분석하는 최초의 방법 및 시도이며 향후 상황별 휴먼 동작 분석에 크게 활용할 수 있을 것이다.

얼굴 인식률 개선을 위한 선형이동 능동카메라 시스템기반 얼굴포즈 보정 기술 (Sliding Active Camera-based Face Pose Compensation for Enhanced Face Recognition)

  • 장승호;김영욱;박창우;박장한;남궁재찬;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.155-164
    • /
    • 2004
  • 최근 지능형 로봇에 대한 관심이 모아지고 있다. 지능형 로봇의 가장 큰 특징은 사용자를 추적, 인식하고 그 결과를 기반으로 상호활동적인 대응을 할 수 있다는 점이다. 얼굴인식이 다른 생채인식과의 비교에서 장점을 가질 수 있는 점은 비 강제성과 비 접촉성을 들 수 있다. 그러나 얼굴인식은 얼굴 취득단계부터 차원의 감소가 발생하고 인식하고자 하는 얼굴 및 주변 환경 변화가 매우 심하기 때문에 다른 생체인식에 비하여 인식률이 낮다. 얼굴인식의 성능을 저하시키는 요인들로는 조명변화, 포즈변화, 표정변화, 카메라와의 거리 등을 들 수 있다. 본 논문에서는 실제 환경에서 얼굴 인식 성능에 가장 많은 영향을 미치는 포즈변화에 대응하기 위하여 새로운 선형이동 능동형 카메라를 개발하여, 정면 얼굴에 근접한 영상을 취득하고 주성분 분석 및 Hidden Markov Model 알고리듬을 이용하여 인식률을 개선하고자 한다. 제한된 방법은 지능형 보안시스템 및 모바일 로봇에 적용하는 것을 목표로 개발 되었지만, 높은 정확도의 얼굴인식을 요구하는 응용분야에 널리 적용할 수가 있다.

차량 항법용 음성인식 시스템의 구현 (Implementation of a Speech Recognition System for a Car Navigation System)

  • 이태한;양태영;박상택;이충용;윤대희;차일환
    • 전자공학회논문지S
    • /
    • 제36S권9호
    • /
    • pp.103-112
    • /
    • 1999
  • 본 논문에서는 차량 항법영 음성 인식을 위한 화자 독립 단독음 인식 시스템을 범용 DSP를 사용하여 구현하였으며, 잡음 처리 기술로 SNR 정규화와 RAS를 결합한 방법을 제안하여 인식 시스템의 성능을 개선시켰다. 인식 알고리즘으로서 반연속 HMM을 사용하였으며, TMS320C31을 이용하여 구현하였다. 실험에서 사용된 인식 단어는 차량 항법 시스템을 위한 명령어 69단어이며, 구현된 인식 시스템은 자동차 환경에서 녹음된 음성 데이터에 의한 인식 결과와 하드웨어 구현에 따르는 제약 조건을 동시에 고려하여 구현되었다. 주행 중에 녹음된 데이터에 대한 컴퓨터 시뮬레이션 상에서 특징 벡터 중 MFCC-CMS를 이용하고, 잡음 처리 방법으로 SNR 정규화와 스펙트럼 차감법을 결합하여 실험한 경우 최고 93.62%의 인식 성능을 보였으며, 89.93%의 인식률을 갖는 기존 방법보다 3.69%의 인식 성능 향상을 가져왔다. 제안된 잡음 처리 방법은 자동차 안에서의 SNR이 5dB이하에서 좋은 인식 성능을 보이는 것으로 나타났다.

  • PDF

플라즈마 식각 공정에서 의사결정 알고리즘을 이용한 실시간 식각 종료점 검출 (Real Time Endpoint Detection in Plasma Etching Using Decision Making Algorithm)

  • 노호택;박영국;한승수
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.9-15
    • /
    • 2016
  • 플라즈마 식각 공정에서 식각 종료점 검출은 중요한 요소이다. Optical Emission Spectroscopy (OES) 는 플라즈마 반응을 분석하는데 사용한다. 그리고 Plasma Impedance Monitoring (PIM) 은 플라즈마 공정 중에 RF power에 의한 voltage, current, power, impedance를 분석하는데 사용한다. 본 논문에서는 새로 제안하는 의사결정 알고리즘을 이용하여 single layer 산화막 플라즈마 식각에서 식각 종료점 검출의 성능을 향상시키는 것을 제안한다. 식각 종료점 검출의 정확도를 높이기 위해 OES 데이터와 PIM 데이터들을 의사결정 알고리즘에 모두 적용하여 사용한다. 제안된 방법은 SiOx 플라즈마 식각에서 식각 종료점을 정확하게 검출한다.

Lexicon transducer를 적용한 conformer 기반 한국어 end-to-end 음성인식 (Conformer with lexicon transducer for Korean end-to-end speech recognition)

  • 손현수;박호성;김규진;조은수;김지환
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.530-536
    • /
    • 2021
  • 최근 들어 딥러닝의 발달로 인해 Hidden Markov Model(HMM)을 사용하지 않고 음성 신화와 단어를 직접 매핑하여 학습하는 end-to-end 음성인식 방법이 각광을 받고 있으며 그 중에서도 conformer가 가장 좋은 성능을 보이고 있다. 하지만 end-to-end 음성인식 방법은 현재 시점에서 어떤 자소 또는 단어가 나타날지에 대한 확률에 대해서만 초점을 두고 있다. 그 이후의 디코딩 과정은 현재 시점에서 가장 높은 확률을 가지는 자소를 출력하거나 빔 탐색을 사용하며 이러한 방식은 모델이 출력하는 확률 분포에 따라 최종 결과에 큰 영향을 받게 된다. 또한 end-to-end 음성인식방식은 전통적인 음성인식 방법과 비교 했을 때 구조적인 문제로 인해 외부 발음열 정보와 언어 모델의 정보를 사용하지 못한다. 따라서 학습 자료에 없는 발음열 변환 규칙에 대한 대응이 쉽지 않다. 따라서 본 논문에서는 발음열 정보를 담고 있는 Lexicon transducer(L transducer)를 이용한 conformer의 디코딩 방법을 제안한다. 한국어 데이터 셋 270 h에 대해 자소 기반 conformer의 빔 탐색 결과와 음소 기반 conformer에 L transducer를 적용한 결과를 비교 평가하였다. 학습자료에 등장하지 않는 단어가 포함된 테스트 셋에 대해 자소 기반 conformer는 3.8 %의 음절 오류율을 보였으며 음소 기반 conformer는 3.4 %의 음절 오류율을 보였다.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF