• 제목/요약/키워드: Heuristic Search Method

검색결과 285건 처리시간 0.023초

프로젝트 일정과 자원 평준화를 포함한 다목적 최적화 문제에서 순차적 자원 감소에 기반한 파레토 집합의 생성 (Generation of Pareto Sets based on Resource Reduction for Multi-Objective Problems Involving Project Scheduling and Resource Leveling)

  • 정우진;박성철;임동순
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.79-86
    • /
    • 2020
  • To make a satisfactory decision regarding project scheduling, a trade-off between the resource-related cost and project duration must be considered. A beneficial method for decision makers is to provide a number of alternative schedules of diverse project duration with minimum resource cost. In view of optimization, the alternative schedules are Pareto sets under multi-objective of project duration and resource cost. Assuming that resource cost is closely related to resource leveling, a heuristic algorithm for resource capacity reduction (HRCR) is developed in this study in order to generate the Pareto sets efficiently. The heuristic is based on the fact that resource leveling can be improved by systematically reducing the resource capacity. Once the reduced resource capacity is given, a schedule with minimum project duration can be obtained by solving a resource-constrained project scheduling problem. In HRCR, VNS (Variable Neighborhood Search) is implemented to solve the resource-constrained project scheduling problem. Extensive experiments to evaluate the HRCR performance are accomplished with standard benchmarking data sets, PSPLIB. Considering 5 resource leveling objective functions, it is shown that HRCR outperforms well-known multi-objective optimization algorithm, SPEA2 (Strength Pareto Evolutionary Algorithm-2), in generating dominant Pareto sets. The number of approximate Pareto optimal also can be extended by modifying weight parameter to reduce resource capacity in HRCR.

Quadratic 복수 컨테이너 적재 문제에 관한 연구 (A Study on the Quadratic Multiple Container Packing Problem)

  • 여기태;석상문;이상욱
    • 한국경영과학회지
    • /
    • 제34권3호
    • /
    • pp.125-136
    • /
    • 2009
  • The container packing problem Is one of the traditional optimization problems, which is very related to the knapsack problem and the bin packing problem. In this paper, we deal with the quadratic multiple container picking problem (QMCPP) and it Is known as a NP-hard problem. Thus, It seems to be natural to use a heuristic approach such as evolutionary algorithms for solving the QMCPP. Until now, only a few researchers have studied on this problem and some evolutionary algorithms have been proposed. This paper introduces a new efficient evolutionary algorithm for the QMCPP. The proposed algorithm is devised by improving the original network random key method, which is employed as an encoding method in evolutionary algorithms. And we also propose local search algorithms and incorporate them with the proposed evolutionary algorithm. Finally we compare the proposed algorithm with the previous algorithms and show the proposed algorithm finds the new best results in most of the benchmark instances.

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발 (Development of Genetic Algorithms for Efficient Constraints Handling)

  • 조영석;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

Solving Integer Programming Problems Using Genetic Algorithms

  • Anh Huy Pham Nguyen;Bich San Chu Tat;Triantaphyllou E
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.400-404
    • /
    • 2004
  • There are many methods to find solutions for Integer Programming problems (IPs) such as the Branch-Bound philosophy or the Cutting Plane algorithm. However, most of them have a problem that is the explosion of sets in the computing process. In addition, GA is known as a heuristic search algorithm for solutions of optimization problems. It is started from a random initial guess solution and attempting to find one that is the best under some criteria and conditions. The paper will study an artificial intelligent method to solve IPs by using Genetic Algorithms (GAs). The original solution of this was presented in the papers of Fabricio Olivetti de Francaand and Kimmo Nieminen [2003]. However, both have several limitations which causes could be operations in GAs. The paper proposes a method to upgrade these operations and computational results are also shown to support these upgrades.

  • PDF

초음파센서를 이용한 이동 로봇의 지역 최소 회복을 위한 주행 알고리즘 (Mobile Robot Navigation For Recovering Local Minimum Using Ultrasonic Sensor)

  • 명기호;양동훈;유영동;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3086-3088
    • /
    • 1999
  • An ultrasonic sensor is one of most popular sensor used to navigate mobile robots within environments containing obstacles. But many navigation algorithm have studied because of the drawback of ultrasonic sensor such that poor directionality, frequent misreadings, specular reflections. Also, the most crucial drawback of this algorithm, that is VFF, VFM, EDM, PFM, WFM, GFM etc. has been that the mobile robot may become trapped in a local minimum. In this paper, we present a theoretical study of a navigation algorithm which integrals a heuristic-search local minimum (or trap) recovery method with a vector-field based method to maneuver cylindric mobile robots in unknown of unstructured environments. Also, an autonomous mobile robot uses dead-reckoning to estimate the current position and orientation of a mobile robot.

  • PDF

DS 알고리즘을 이용한 마이크로 그리드 최적운영기법 (Optimal Operation Method of Microgrid System Using DS Algorithm)

  • 박시나;이상봉
    • 조명전기설비학회논문지
    • /
    • 제29권5호
    • /
    • pp.34-40
    • /
    • 2015
  • This paper presents an application of Differential Search (DS) meta-heuristic optimization algorithm for optimal operation of micro grid system. DS algorithm has the benefit of high convergence rate and precision compared to other optimization methods. The micro grid system consists of a wind turbine, a diesel generator, and a fuel cell. The simulation is applied to micro grid system only. The wind turbine generator is modeled by considering the characteristics of variable output. One day load data which is divided every 20 minute and wind resource for wind turbine generator are used for the study. The method using the proposed DS algorithm is easy to implement, and the results of the convergence performance are better than other optimization algorithms.

Structural damage detection based on Chaotic Artificial Bee Colony algorithm

  • Xu, H.J.;Ding, Z.H.;Lu, Z.R.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1223-1239
    • /
    • 2015
  • A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are studied to investigate the efficiency and correctness of the proposed method. The simulation results show that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary algorithms, even with noise corruption.

홍채 인식을 위한 고속 홍채 영역 추출 방법 (A Fast Iris Region Finding Algorithm for Iris Recognition)

  • 송선아;김백섭;송성호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권9호
    • /
    • pp.876-884
    • /
    • 2003
  • 홍채 인식을 위해서는 먼저 홍채 영역을 추출해야 하는데 이를 위해서는 홍채의 안쪽 경계인 동공 경계와 바깥쪽 경계인 홍채 경계를 검출해야 한다. 경계를 검출하는데는 Daugman이 제안한 원형경계 검출기가 가장 일반적이고 효과적인 방법으로 알려져 있다. 이 방법은 전역적인 탐색에 의존하기 때문에 정확하지만 계산 시간이 많이 걸리는 단점이 있다. 계산 시간을 줄이기 위해 경험적 방법들이 사용되기도 하지만 정확성이 떨어지는 문제점이 있었다. 본 논문에서는 정확성을 떨어뜨리지 않으면서 계산 속도를 줄이는 홍채 영역 추출 알고리즘을 제안한다. 제안된 방법은 동공 경계와 홍채 경계가 가지는 문제에 대한 지식(problem knowledge)을 사용하여 제한조건을 부가하여 탐색한다. 경계 검출을 위한 탐색 영역은 동공을 포함하는 최대 원과 최소 원을 이용하여 제한하여 탐색 시간을 줄인다 동공 경계의 경우 이진화된 동공 영상에서 최대 원과 최소 원을 구하고, 홍채 경계의 경우 영상의 분산을 이용하여 얻은 경계점으로부터 최대 원과 최소 원을 구한다. 제안된 방법을 Daugman방법, 히스토그램 분석법, 가중치를 이용한 허프변환 방법 둥과 실험을 통해 비교하였다. 그 결과 제안된 방법은 Daugman방법과 동일한 정확도를 보이며, Daugman방법이나 가중치를 이용한 허프변환 방법보다 빠르다는 것을 알 수 있었다.

높은 신뢰도의 네트워크 설계를 위한 진화 연산에 기초한 알고리즘 (An Algorithm based on Evolutionary Computation for a Highly Reliable Network Design)

  • 김종율;이재욱;현광남
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권4호
    • /
    • pp.247-257
    • /
    • 2005
  • 일반적으로 네트워크 설계 문제는 네트워크의 크기가 늘어남에 따라 지수적으로 복잡도가 증가하여 전통적인 방법으로는 풀이하기 힘든 NP-hard 조합 최적화 문제 중의 하나로 분류될 수 있다. 본 논문에서는 네트워크 신뢰도 제약을 고려하면서 네트워크 구축비용을 효과적으로 최소화하는, 높은 신뢰도의 네트워크 토폴로지 설계 문제를 풀기 위해 스패닝 트리를 효율적으로 표현할 수 있는 Prufer수(PN) 기반의 진화 연산법과 2-연결성을 고려하는 휴리스틱 방법으로 구성된 두 단계의 효율적인 해법을 제안한다. 즉, 먼저 스패닝 트리를 찾아내기 위해 진화 연산법 중에 보편적으로 널리 알려져 있는 유전자 알고리즘(GA)을 이용하고 그 다음으로 첫 번째 단계에서 발견한 스패닝 트리에 대해 최적의 네트워크 토폴로지를 찾기 위해서 2-연결성을 고려한 휴리스틱 방법을 적용한다. 마지막으로 수치예의 결과를 통해 제안한 해법의 성능에 대해서 살펴보도록 한다.