• Title/Summary/Keyword: Heuristic Search Method

Search Result 285, Processing Time 0.036 seconds

Generation of Pareto Sets based on Resource Reduction for Multi-Objective Problems Involving Project Scheduling and Resource Leveling (프로젝트 일정과 자원 평준화를 포함한 다목적 최적화 문제에서 순차적 자원 감소에 기반한 파레토 집합의 생성)

  • Jeong, Woo-Jin;Park, Sung-Chul;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.79-86
    • /
    • 2020
  • To make a satisfactory decision regarding project scheduling, a trade-off between the resource-related cost and project duration must be considered. A beneficial method for decision makers is to provide a number of alternative schedules of diverse project duration with minimum resource cost. In view of optimization, the alternative schedules are Pareto sets under multi-objective of project duration and resource cost. Assuming that resource cost is closely related to resource leveling, a heuristic algorithm for resource capacity reduction (HRCR) is developed in this study in order to generate the Pareto sets efficiently. The heuristic is based on the fact that resource leveling can be improved by systematically reducing the resource capacity. Once the reduced resource capacity is given, a schedule with minimum project duration can be obtained by solving a resource-constrained project scheduling problem. In HRCR, VNS (Variable Neighborhood Search) is implemented to solve the resource-constrained project scheduling problem. Extensive experiments to evaluate the HRCR performance are accomplished with standard benchmarking data sets, PSPLIB. Considering 5 resource leveling objective functions, it is shown that HRCR outperforms well-known multi-objective optimization algorithm, SPEA2 (Strength Pareto Evolutionary Algorithm-2), in generating dominant Pareto sets. The number of approximate Pareto optimal also can be extended by modifying weight parameter to reduce resource capacity in HRCR.

A Study on the Quadratic Multiple Container Packing Problem (Quadratic 복수 컨테이너 적재 문제에 관한 연구)

  • Yeo, Gi-Tae;Soak, Sang-Moon;Lee, Sang-Wook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.125-136
    • /
    • 2009
  • The container packing problem Is one of the traditional optimization problems, which is very related to the knapsack problem and the bin packing problem. In this paper, we deal with the quadratic multiple container picking problem (QMCPP) and it Is known as a NP-hard problem. Thus, It seems to be natural to use a heuristic approach such as evolutionary algorithms for solving the QMCPP. Until now, only a few researchers have studied on this problem and some evolutionary algorithms have been proposed. This paper introduces a new efficient evolutionary algorithm for the QMCPP. The proposed algorithm is devised by improving the original network random key method, which is employed as an encoding method in evolutionary algorithms. And we also propose local search algorithms and incorporate them with the proposed evolutionary algorithm. Finally we compare the proposed algorithm with the previous algorithms and show the proposed algorithm finds the new best results in most of the benchmark instances.

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

Development of Genetic Algorithms for Efficient Constraints Handling (구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발)

  • Cho, Young-Suk;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

Solving Integer Programming Problems Using Genetic Algorithms

  • Anh Huy Pham Nguyen;Bich San Chu Tat;Triantaphyllou E
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.400-404
    • /
    • 2004
  • There are many methods to find solutions for Integer Programming problems (IPs) such as the Branch-Bound philosophy or the Cutting Plane algorithm. However, most of them have a problem that is the explosion of sets in the computing process. In addition, GA is known as a heuristic search algorithm for solutions of optimization problems. It is started from a random initial guess solution and attempting to find one that is the best under some criteria and conditions. The paper will study an artificial intelligent method to solve IPs by using Genetic Algorithms (GAs). The original solution of this was presented in the papers of Fabricio Olivetti de Francaand and Kimmo Nieminen [2003]. However, both have several limitations which causes could be operations in GAs. The paper proposes a method to upgrade these operations and computational results are also shown to support these upgrades.

  • PDF

Mobile Robot Navigation For Recovering Local Minimum Using Ultrasonic Sensor (초음파센서를 이용한 이동 로봇의 지역 최소 회복을 위한 주행 알고리즘)

  • Myung, Ki-Ho;Yang, Dong-Hoon;Yoo, Young-Dong;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3086-3088
    • /
    • 1999
  • An ultrasonic sensor is one of most popular sensor used to navigate mobile robots within environments containing obstacles. But many navigation algorithm have studied because of the drawback of ultrasonic sensor such that poor directionality, frequent misreadings, specular reflections. Also, the most crucial drawback of this algorithm, that is VFF, VFM, EDM, PFM, WFM, GFM etc. has been that the mobile robot may become trapped in a local minimum. In this paper, we present a theoretical study of a navigation algorithm which integrals a heuristic-search local minimum (or trap) recovery method with a vector-field based method to maneuver cylindric mobile robots in unknown of unstructured environments. Also, an autonomous mobile robot uses dead-reckoning to estimate the current position and orientation of a mobile robot.

  • PDF

Optimal Operation Method of Microgrid System Using DS Algorithm (DS 알고리즘을 이용한 마이크로 그리드 최적운영기법)

  • Park, Si-Na;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • This paper presents an application of Differential Search (DS) meta-heuristic optimization algorithm for optimal operation of micro grid system. DS algorithm has the benefit of high convergence rate and precision compared to other optimization methods. The micro grid system consists of a wind turbine, a diesel generator, and a fuel cell. The simulation is applied to micro grid system only. The wind turbine generator is modeled by considering the characteristics of variable output. One day load data which is divided every 20 minute and wind resource for wind turbine generator are used for the study. The method using the proposed DS algorithm is easy to implement, and the results of the convergence performance are better than other optimization algorithms.

Structural damage detection based on Chaotic Artificial Bee Colony algorithm

  • Xu, H.J.;Ding, Z.H.;Lu, Z.R.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1223-1239
    • /
    • 2015
  • A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are studied to investigate the efficiency and correctness of the proposed method. The simulation results show that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary algorithms, even with noise corruption.

A Fast Iris Region Finding Algorithm for Iris Recognition (홍채 인식을 위한 고속 홍채 영역 추출 방법)

  • 송선아;김백섭;송성호
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.876-884
    • /
    • 2003
  • It is essential to identify both the pupil and iris boundaries for iris recognition. The circular edge detector proposed by Daugman is the most common and powerful method for the iris region extraction. The method is accurate but requires lots of computational time since it is based on the exhaustive search. Some heuristic methods have been proposed to reduce the computational time, but they are not as accurate as that of Daugman. In this paper, we propose a pupil and iris boundary finding algorithm which is faster than and as accurate as that of Daugman. The proposed algorithm searches the boundaries using the Daugman's circular edge detector, but reduces the search region using the problem domain knowledge. In order to find the pupil boundary, the search region is restricted in the maximum and minimum bounding circles in which the pupil resides. The bounding circles are obtained from the binarized pupil image. Two iris boundary points are obtained from the horizontal line passing through the center of the pupil region obtained above. These initial boundary points, together with the pupil point comprise two bounding circles. The iris boundary is searched in this bounding circles. Experiments show that the proposed algorithm is faster than that of Daugman and more accurate than the conventional heuristic methods.

An Algorithm based on Evolutionary Computation for a Highly Reliable Network Design (높은 신뢰도의 네트워크 설계를 위한 진화 연산에 기초한 알고리즘)

  • Kim Jong-Ryul;Lee Jae-Uk;Gen Mituso
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.247-257
    • /
    • 2005
  • Generally, the network topology design problem is characterized as a kind of NP-hard combinatorial optimization problem, which is difficult to solve with the classical method because it has exponentially increasing complexity with the augmented network size. In this paper, we propose the efficient approach with two phase that is comprised of evolutionary computation approach based on Prufer number(PN), which can efficiently represent the spanning tree, and a heuristic method considering 2-connectivity, to solve the highly reliable network topology design problem minimizing the construction cost subject to network reliability: firstly, to find the spanning tree, genetic algorithm that is the most widely known type of evolutionary computation approach, is used; secondly, a heuristic method is employed, in order to search the optimal network topology based on the spanning tree obtained in the first Phase, considering 2-connectivity. Lastly, the performance of our approach is provided from the results of numerical examples.