• Title/Summary/Keyword: Heterozygous

Search Result 373, Processing Time 0.027 seconds

Development of an Apple F1 Segregating Population Genetic Linkage Map Using Genotyping-By-Sequencing

  • Ban, Seung Hyun;Choi, Cheol
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.434-443
    • /
    • 2018
  • Genotyping-by-sequencing (GBS) has been used as a viable single nucleotide polymorphism (SNP) validation method that provides reduced representation sequencing by using restriction endonucleases. Although GBS makes it possible to perform marker discovery and genotyping simultaneously with reasonable costs and a simple molecular biology workflow, the standard TASSEL-GBS pipeline was designed for homozygous groups, and genotyping of heterozygous groups is more complicated. To addresses this problem, we developed a GBS pipeline for heterozygous groups that called KNU-GBS pipeline, specifically for apple (Malus domestica). Using KNU-GBS pipeline, we constructed a genetic linkage map consisting of 1,053 SNP markers distributed over 17 linkage groups encompassing a total of 1350.1 cM. The novel GBS pipeline for heterozygous groups will be useful for marker-assisted breeding programs, and diverse heterozygous genome analyses.

Production and evaluation of PRRS resistant pigs (PRRS 저항성 유전형 자돈의 생산 및 평가)

  • Jeong, Chang-Gi;Khatun, Amina;Nazki, Salik;Lee, Sim-In;Kim, Tae-Hun;Kim, Kwan-Suk;Park, Choi-Kyu;Kim, Won-Il
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Porcine reproductive and respiratory syndrome (PRRS) is economically the most important and challenging disease in swine industries worldwide and caused by PRRS virus (PRRSV). Previous studies reported that pigs with heterozygous genotypes in the guanylate-binding proteins (GBP1 and GBP5) exhibited increased resistance against PRRSV infection. The present study was conducted to produce higher numbers of the heterozygous pigs based on the PRRS resistant polymorphisms found in GBP1 (GBP1E2 and WUR) and GBP5, and evaluate the resistance of heterozygous pigs against challenge with a type 2 PRRSV (JA142) in comparison with homozygous pigs. In the challenge study, 12, 4 week-old PRRSV-negative piglets were selected based on the genotypes of the 3 polymorphisms (GBP1E2, WUR and GBP5). Among them, 8 piglets [homozygous (n=4) and heterozygous (n=4)] were challenged with JA142 and kept in the same room, and the remaining 4 piglets were kept separately as a negative control. In results, the sperms collected from the boars of GBP1E2-GG genotype produced approximately 28~41% higher numbers of heterozygous piglets as compared with those from the boars of GBP1E2-AG genotype. In the challenge study, we found that heterozygous piglets showed the significantly lower levels of viremia than homozygous piglets at 14, 21 and 28 dpc. Consistently, these heterozygous piglets also exhibited significantly higher ADWG than homozygous piglets. Therefore, in the current study, selection of boars based on SNP markers could increase the production of PRRS resistant piglets and the PRRS resistant pigs were found to be more resistant to PRRSV infection.

Porcine Knock-in Fibroblasts Expressing hDAF on α-1,3-Galactosyltransferase (GGTA1) Gene Locus

  • Kim, Ji-Woo;Kim, Hye-Min;Lee, Sang-Mi;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1473-1480
    • /
    • 2012
  • The Galactose-${\alpha}1$,3-galactose (${\alpha}1$,3Gal) epitope is responsible for hyperacute rejection in pig-to-human xenotransplantation. Human decay-accelerating factor (hDAF) is a cell surface regulatory protein that serves as a complement inhibitor to protect self cells from complement attack. The generation of ${\alpha}1$,3-galactosyltransferase (GGTA1) knock-out pigs expressing DAF is a necessary step for their use as organ donors for humans. In this study, we established GGTA1 knock-out cell lines expressing DAF from pig ear fibroblasts for somatic cell nuclear transfer. hDAF expression was detected in hDAF knock-in heterozygous cells, but not in normal pig cells. Expression of the GGTA1 gene was lower in the knock-in heterozygous cell line compared to the normal pig cell. Knock-in heterozygous cells afforded more effective protection against cytotoxicity with human serum than with GGTA1 knock-out heterozygous and control cells. These cell lines may be used in the production of GGTA1 knock-out and DAF expression pigs for xenotransplantation.

Skeletal Ryanodine Receptor 1-Heterozygous PSE (Pale, Soft and Exudative) Meat Contains a Higher Concentration of Myoglobin than Genetically Normal PSE Meat in Pigs

  • Obi, T.;Matsumoto, M.;Miyazaki, K.;Kitsutaka, K.;Tamaki, M.;Takase, K.;Miyamoto, A.;Oka, T.;Kawamoto, Y.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1244-1249
    • /
    • 2010
  • Comparisons of properties between skeletal ryanodine receptor 1 (sRyR1)-heterozygous-mutated and normal types of meat were carried out in pigs using PSE (pale, soft and exudative) meat found during the butchering process. All samples considered to be PSE meat showed irregular running and disorder of the muscle fibers and a wider inter-fiber space upon light microscopic observation. Electron microscopy revealed disintegration, twisting, and disorder of the myofibril arrangement and elimination of the Z line in PSE meat, compared with normal meat. Meat property tests demonstrated greater decreases in water holding capacity, moisture and sarcoplasmic protein, and higher $L^*$ values for the meat color index in PSE meat than in normal meat, but there were no differences in these factors between genetically normal and sRyR1-heterozygous PSE meat. On the other hand, higher $a^*$ and $b^*$ values were observed in sRyR1-heterozygous than in normal PSE meat, and similar alterations to the a* value were observed in terms of the amount of myoglobin and density of the 17-kDa protein band, corresponding to the molecular mass of myoglobin, on SDS-PAGE gels. These results suggest that sRyR1-heterozygous PSE pork contains much more myoglobin than genetically normal PSE meat.

Haplotype Analysis of MDRI Gene (Exon 12, 21 and 26) in Korean (한국인에 있어서 MDRI 유전자(exon 12, 21 및 26)의 일배체형 분석)

  • Kim, Se-Mi;Park, Sun-Ae;Cho, Hea-Young;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.365-372
    • /
    • 2008
  • The aim of this study was to investigate the frequency of the SNPs on MDR1 exon 12, 21 and 26 in Korean population and to analyze haplotype frequency on MDR1 exon 12, 21 and 26 in Korean population. A total of 426 healthy subjects was genotyped for MDR1, using polymerase chain reaction-based diagnostic tests. Haplotype was statistically inferred using an algorithm based on the expectation-maximization (EM). MDR1 C1236T genotyping revealed that the frequency for homozygous wild-type (C/C), heterozygous (C/T) and for homozygous mutant-type (T/T) was 20.19%, 46.48% and 33.33%, respectively. MDR1 G2677T/A genotyping revealed that the frequency for homozygous G/G, heterozygous G/T, homozygous T/T, heterozygous G/A, heterozygous T/A and for homozygous A/A type was 30.75%, 42.26%, 9.86%, 7.51 %, 7.04% and 2.58%, respectively. MDR1 C3435T genotyping revealed that the frequency for homozygous wild-type (C/C), heterozygous (C/T) and for homozygous mutant-type (T/T) was 38.73%, 50.24% and 11.03%, respectively. Twelve haplotypes were observed. Of the three major haplotypes identified (CGC, TTT and TGC), the CGC haplotype were mainly predominant in the Korean populations and accounted for 29.96% of total haplotype in Korean.

Characteristics of K+ Outward Currents in the Cochlear Outer Hair Cells of Circling Mice within the First Postnatal Week

  • Ahn, Ji Woong;Kang, Shin Wook;Ahn, Seung Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.383-388
    • /
    • 2015
  • $K^+$ outward currents in the outer hair cells (OHCs) of circling mice (homozygous (cir/cir) mice), an animal model for human deafness (DFNB6 type), were investigated using a whole cell patch clamp technique. Littermate heterozygous (+/cir) mice of the same age (postnatal day (P) 0-P6) were used as controls. Similar slow rising $K^+$ currents were observed in both genotypes, but their biophysical and pharmacological properties were quite different. The values of Vhalf for activation were significantly different in the heterozygous (+/cir) and homozygous (cir/cir) mice ($-8.1{\pm}2.2mV$, heterozygous (+/cir) mice (n=7) and $-17.2{\pm}4.2mV$, homozygous (cir/cir) mice (n=5)). The inactivation curve was expressed by a single first order Boltzmann equation in the homozygous (cir/cir) mice, while it was expressed by a sum of two first order Boltzmann equations in the heterozygous (+/cir) mice. The $K^+$ current of homozygous (cir/cir) mice was more sensitive to TEA in the 1 to 10 mM range, while the 4-AP sensitivities were not different between the two genotypes. Removal of external $Ca^{2+}$ did not affect the $K^+$ currents in either genotype, indicating that the higher sensitivity of $K^+$ current to TEA in the homozygous (cir/cir) mice was not due to an early expression of $Ca^{2+}$ activated $K^+$ channels. Our results suggest that the $K^+$ outward current of developing homozygous (cir/cir) mice OHCs is different in both biophysical and pharmacological aspects than that of heterozygous (+/cir) mice.

Early onset of colorectal cancer in a 13-year-old girl with Lynch syndrome

  • Ahn, Do Hee;Rho, Jung Hee;Tchah, Hann;Jeon, In-Sang
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.1
    • /
    • pp.40-42
    • /
    • 2016
  • Lynch syndrome is the most common inherited colon cancer syndrome. Patients with Lynch syndrome develop a range of cancers including colorectal cancer (CRC) and carry a mutation on one of the mismatched repair (MMR) genes. Although CRC usually occurs after the fourth decade in patients with Lynch syndrome harboring a heterozygous MMR gene mutation, it can occur in children with Lynch syndrome who have a compound heterozygous or homozygous MMR gene mutation. We report a case of CRC in a 13-year-old patient with Lynch syndrome and congenital heart disease. This patient had a heterozygous mutation in MLH1 (an MMR gene), but no compound MMR gene defects, and a K-RAS somatic mutation in the cancer cells.

A Case of Pseudodeficiency in a Potential Late Onset Pompe Disease Carrier, with Double Dual Variant, Each in cis Formation (Pseudodeficiency 및 potential late onset Pompe disease 보인자로 확인된 cis형 dual variant 돌연변이 두 개를 가진 여아 1례)

  • Seung Ho, Kim;Goo Lyeon, Kim;Young Pyo, Chang;Dong Hwan, Lee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.22 no.2
    • /
    • pp.58-62
    • /
    • 2022
  • Pompe disease (PD) is an autosomal recessive genetic disorder caused by a deficiency of the lysosomal enzyme acid α-glucosidase (GAA). It is easy to hastily diagnose as patients if they have two pathogenic variants. Clinical pathologists misdiagnosed our infant and her mother as PD. Here, we report a case of pseudodeficiency in a potential late-onset Pompe disease (LOPD) carrier with a double dual variant, each in cis formation in a 3-month infant. The person who has two pathogenic variants was diagnosed as a carrier, not a patient. It was first reported in Korea. The patient had: two likely pathogenic heterozygous mutations on exon #4: c.752C>T (p.Ser251Leu), c.761C>T (p.Ser254Leu), and a heterozygous mutation on exon #12: c.1726G>A (p.Gly576Ser), also with a heterozygous mutation on exon #15: c.2065G>A (p.Glu689Lys). By presenting this case we emphasize the possibility of cis formation of genes which may cause pseudodeficiency, and potential LOPD carrier form. Hereby we suggest that thorough evaluation of GAA gene is essential among whom initially diagnosed as PD.

Inhibition of K+ outward currents by linopirdine in the cochlear outer hair cells of circling mice within the first postnatal week

  • Kang, Shin Wook;Ahn, Ji Woong;Ahn, Seung Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.251-257
    • /
    • 2017
  • Inhibition of $K^+$ outward currents by linopirdine in the outer hair cells (OHCs) of circling mice (homozygous (cir/cir) mice), an animal model for human deafness (DFNB6 type), was investigated using a whole cell patch clamp technique. Littermate heterozygous (+/cir) and ICR mice of the same age (postnatal day (P) 0 -P6) were used as controls. Voltage steps from -100 mV to 40 mV elicited small inward currents (-100 mV~-70 mV) and slow rising $K^+$ outward currents (-60 mV~40 mV) which activated near -50 mV in all OHCs tested. Linopirdine, a known blocker of $K^+$ currents activated at negative potentials ($I_{K,n}$), did cause inhibition at varying degree (severe, moderate, mild) in $K^+$ outward currents of heterozygous (+/cir) or homozygous (cir/cir) mice OHCs in the concentration range between 1 and $100{\mu}m$, while it was apparent only in one ICR mice OHC out of nine OHCs at $100{\mu}m$. Although the half inhibition concentrations in heterozygous (+/cir) or homozygous (cir/cir) mice OHCs were close to those reported in $I_{K,n}$, biophysical and pharmacological properties of $K^+$ outward currents, such as the activation close to -50 mV, small inward currents evoked by hyperpolarizing steps and TEA sensitivity, were not in line with $I_{K,n}$ reported in other tissues. Our results show that the delayed rectifier type $K^+$ outward currents, which are not similar to $I_{K,n}$ with respect to biophysical and pharmacological properties, are inhibited by linopirdine in the developing (P0~P6) homozygous (cir/cir) or heterozygous (+/cir) mice OHCs.

A compound heterozygous mutation in the FMO3 gene: the first pediatric case causes fish odor syndrome in Korea

  • Kim, Ji Hyun;Cho, Sung Min;Chae, Jong-Hee
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.3
    • /
    • pp.94-97
    • /
    • 2017
  • Trimethylaminuria (TMAuria), known as "fish odor syndrome," is a congenital metabolic disorder characterized by an odor resembling that of rotting fish. This odor is caused by the secretion of trimethylamine (TMA) in the breath, sweat, and body secretions and the excretion of TMA along with urine. TMAuria is an autosomal recessive disorder caused by mutations in flavin-containing monooxygenase 3 (FMO3). Most TMAuria cases are caused by missense mutations, but nonsense mutations have also been reported in these cases. Here, we describe the identification of a novel FMO3 gene mutation in a patient with TMAuria and her family. A 3-year-old girl presented with a strong corporal odor after ingesting fish. Genomic DNA sequence analysis revealed that she had compound heterozygous FMO3 mutations; One mutation was the missense mutation p.Val158Ile in exon 3, and the other was a novel nonsense mutation, p.Ser364X, in exon 7 of the FMO3 gene. Familial genetic analyses showed that the p.Val158Ile mutation was derived from the same allele in the father, and the p.Ser364X mutation was derived from the mother. This is the first description of the p.Ser364X mutation, and the first report of a Korean patient with TMAuria caused by novel compound heterozygous mutations.